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ABSTRACT

Cutting and packing problems is an area in Operations Research that has been stud-
ied extensively over the years. These problems have many real-world applications and,
therefore, can have many different defining characteristics. One such characteristic is the
shape of the items involved in a cutting and packing problem, with both regular items
(e.g., rectangles and circles) and irregular items (e.g., concave polygons) being contem-
plated in the literature. This graduation thesis concerns the cutting/packing of tetris-like
items, popularized from the famous game “Tetris”. These items are modelled through
two rectangles with flexible dimensions connected by their edges, and they are packed in
a large rectangular board with either two fixed dimensions, or one fixed and the other
variable. Furthermore, two different kinds of assignments were contemplated: maximiz-
ing output value and minimizing input value, with one mixed integer programming model
being developed for each of the two. As far as the performed research indicates, the de-
veloped models are a novelty in the cutting and packing problems literature. In order to
provide a firm basis for the understanding of this thesis and to present the cutting-edge
researches in cutting and packing problems, a literature review is performed that analyzes
different variants of cutting and packing problems. After that, the developed models for
the maximization and minimization versions of the problem are presented and explained
in detail, and an adaptation of the normal patterns variable generation is presented and
explained as well. The maximization version concerns a situation where the goal is to
optimize the placement of the tetris-like pieces in the board, so that the sum of the values
of the placed items is maximized. The minimization version concerns a situation where
there is a given number of pieces to be placed and the goal is to minimize one of the
dimensions of the board while satisfying this constraint. One problem with mixed integer
programming models is that they tend to be slow for these types of problems, which are
generally NP-complete, and, therefore, two heuristics with a similar logic are also devel-
oped and presented: one relax-and-fix and one fix-and-optimize heuristic. The models
and the heuristics were then implemented and tested using Python and Gurobi to reach
solutions for each of the generated pseudo-random instances. The results show that the
models are effective and feasible for representing tetris-like items and that the adapted
normal patterns have a significant positive impact in the solver’s performance. Further-
more, the developed relax-and-fix heuristic is effective and efficient for the maximization
problem, and is able to provide sub-optimal initial solutions for the minimization prob-
lem.

Keywords — Operations Research, Cutting and Packing Problems, Tetris-like Items,
Rectangular Items.
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1 INTRODUCTION

Cutting and packing problems can be broadly divided into cutting problems, which
consist of cutting larger units into smaller units, and packing problems, which consist
of packing smaller units into larger units. The larger units are typically called objects,
and the smaller units are typically called items. Both problems aim at optimizing certain
goals (WASCHER; HAUSSNER; SCHUMANN, 2007). Examples of cutting problems
applications appear in cutting steel bars, paper reels, cardboard boxes, metal or wood
sheets, fabric rolls, glass plates, etc. Examples of packing problems applications appear

in loading boxes onto pallets or into containers and trucks.

Although in practice they are two very distinct problems, from a mathematical point of
view it does not matter whether the pattern obtained for a given set of units is interpreted
as being a cutting pattern or a packing pattern, which implies the existence of a “duality”
between cutting problems and packing problems, that is, the duality between cutting
material /packing space and cutting space/packing material. Since the early 1990s, in
addition to these two classes of problems, other related or integrated problems with similar

logical structure have been treated as cutting and packing problems (JUNQUEIRA| 2009).

The object of study of this thesis consists of a variant of two-dimensional cutting and
packing problems involving tetris-like items, for example, with “L”, “J”, “T”, “S” and “Z”
shapes, among other. In these problems, items of these types must be arranged without
overlapping and inside a rectangular board, and the objective may consist of maximizing
the occupied area of the board (i.e., where not necessarily all available items are used) or
minimizing one of the dimensions of the board (i.e., where necessarily all available items

are used).

The following Figure |1]illustrates a solution (cutting/packing pattern) for an example
involving tetris-like items. In this figure, the hatched areas represent unoccupied parts
of the board. It is important to state that the items addressed in this thesis are not
restricted to tetrominoes, which consist of four identical squares connected by their edges,

as originally considered in the game Tetris (TETRIS| [2022), but to more general items
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that have the shapes of tetrominoes, but not necessarily their proportions.

Figure 1: Solution to an Example Involving Tetris-like Items

Source: The Author

According to the typology of [Wascher, Hauiner & Schumann| (2007)), these problems
could be classified as 2D-R-IIPP/SLOPP/SKP, based on the first objective, and as 2D-
R-ODP, based on the second objective, and assuming that there is a certain regularity in
the form of the items. If it is understood that this regularity does not exist, then these
problems could be classified as 2D-I-ITPP/SLOPP/SKP and as 2D-I-ODP, respectively
(BENNELL; OLIVEIRA| [2008). In other words, the consideration of tetris-like items
makes the problems addressed in this thesis not fit perfectly into the typology proposed
by Wascher, Hauner & Schumann| (2007)), so they would be better classified as a variant

of two-dimensional cutting and packing problems.

Two-dimensional cutting and packing problems with tetris-like items can occur in
many specific sub-sectors of the industry (e.g., textiles, apparel, footwear, metalworking,
coatings, etc.) where the items to be cut or packed have shapes that can be approximated
by shapes like those in Figure [II Some real-world applications might include cutting
fabrics and leather, stamping metal sheets, cutting ceramic coatings, designing printed

circuit boards, and layout of magazines, newspapers, and web pages.

As a variant of two-dimensional cutting and packing problems, the problems con-
sidered in this thesis are combinatorial optimization problems that are difficult to solve
exactly (LODI; MARTELLO; MONACI, 2002; SILVA; OLIVEIRA; WASCHER, 2014),
and, to the best of our knowledge, there are no works in the literature that have treated

these problems and proposed mixed integer linear programming models to describe them.

1.1 Objectives and Contributions of this Thesis

The objectives of this graduation thesis are the following:
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I To study the broad class of Cutting and Packing Problems, focusing on a specific

combination of sub-problems and variants;

IT To build two mathematical models with different objective functions capable of con-

templating the cutting/packing of tetris-like items in a large rectangular board;

IIT To implement the models in a computational language in order to solve the prob-
lem and analyze the performance of the models for different instances with different

characteristics;

IV To implement heuristics based on mathematical programming models in order to
solve the problem and analyze the performance of the heuristics compared to the

monolithic models.

As for the main contributions of this thesis, they are the following:

I Building two novel and original models for the cutting/packing of tetris-like items
modeled by a pair of connected rectangles, to be placed on a large rectangular board

with either both dimensions fixed or one variable dimension;

IT Providing faster heuristic alternatives to the monolithic models capable of reaching

solutions with similar qualities.

1.2 Structure of this Thesis

e Chapter 1 - Introduction: Presentation of the thesis’ theme, its motivations,

objectives, contributions and structure;

e Chapter 2 - Literature Review: Review of studies which served as the basis for
the mathematical model, covering concepts such as regular and irregular items in
cutting and packing problems, tetrominoes and mixed integer programming-based

heuristics;

e Chapter 3 - Mathematical Modeling: Explanation of how the tetris-like items
were modelled, presenting the used notation and the models themselves, along with

explanatory comments to the models;

e Chapter 4 - Solution Approach: Explanation of how the heuristics for the

developed models were designed, along with explanatory comments to the heuristics;
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e Chapter 5 - Computational Test: Tests to evaluate the models and heuristics
performance in the generated instances, with results and discussions;

e Chapter 6 - Future Prospects: Closure of the thesis, with a summary of the

work, its limitations and future research, and final considerations.
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2 LITERATURE REVIEW

In this chapter, the most relevant academic subjects explored in this thesis are intro-
duced to provide the knowledge-basis necessary for understanding the conducted research,
and to exhibit the state-of-the-art research on these subjects. First, the topics of Oper-
ations Research and, more specifically, cutting and packing problems are introduced,
followed by two subsets of these problems, one with regular items and the other with
irregular items. Then, the subject of tetrominoes and their study in cutting and packing
problems is discussed, and, finally, some heuristic methods based on mathematical pro-
gramming that can be used to generate solutions in cutting and packing problems are

analyzed. Figure [2| shows the structure of this chapter and its topics:

Figure 2: Structure for the Literature Review
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Source: The Author
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2.1 Operations Research and the Class of Cutting
and Packing Problems

According to [Murthy| (2007), Operations Research is a field of mathematics that is
useful as a scientific base for management to optimize decisions to their problems. This
area of study was developed during the Second World War as time-setting problem for
dropping bombs from airplanes onto submarines. The area of focus went on to expand
into resource optimization for the military, and, since then, Operations Research has
expanded to address many other subjects, such as the industry, economic growth planning,

agriculture and traffic control.

This research utilizes mathematical models to describe systems, which are defined as
an organization of interdependent components that work together to accomplish a goal
(WINSTON; 1997). These models possess three main parts, the objective function, the
decision variables, and the constrains. The goal of an Operations Research model is
to either maximize or minimize the objective function, which is affected by the decision
variables. The values of these variables can be determined by the user of the model, whose
main task is choosing these values so that the objective function is either maximized or
minimized. The decision variables are described by the model’s constrains, which restrict

the values of the variables.

Furthermore, the optimization methods for these problems can be classified according
to different characteristic of the problem and the model (DUTTA] [2016)). One of the
possible classifications is based on the structure of the equations and subdivides models
into ones that require linear programming (LP) and ones that require non-linear pro-
gramming (NLP). Simply put, a model in which all the equations are linear, including
both the objective function and constrains, requires linear programming. Another possi-
ble classification is based on the nature of the decision variables and subdivides models
into ones that require continuous optimization and ones that require discrete optimiza-
tion. If the variables are contained in the real numbers domain and the objective function
and constrains are continuous, then the model requires continuous optimization, but if
the variables can only possess integer values or are binary, then the model requires dis-
crete optimization. The latter requires integer programming (IP), and in a case where a
mix of continuous and discrete decision variables are used, then it requires mixed integer

programming (MIP).

The field of Operations Research has different types of problems, and this thesis

concerns cutting and packing problems, which have a common structure (WASCHER;
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HAUSSNER; SCHUMANN| 2007). These problems have two sets of elements: one of
large objects; one of small items. Both of them are defined exhaustively in a certain
number of geometric dimensions, and subsets of the small items must lie entirely within
its designated large object without overlaps. Furthermore, a single- or multi-dimensional
objective function is optimized and a solution to the problem may result in using either
all or a portion of the large objects and small items. In order to achieve a global optimum,

five sub-problems must be simultaneously solved:

1. Selection problem regarding the large objects;
2. Selection problem regarding the small items;
3. Grouping problem regarding the selected small items;

4. Allocation problem regarding the assignment of the subsets of small items to the

large objects;

5. Layout problems regarding the arrangement of the small items on each of the selected

large objects with respect to the geometric condition.

Although cutting and packing are two very distinct problems in practice, from a
mathematical point of view it does not matter whether the pattern obtained for a given
set of units is interpreted as being a cutting pattern or a packing pattern, which implies
the existence of a “duality” between cutting problems and packing problems, that is, the
duality between cutting material /packing space and cutting space/packing material. Since
the early 1990s, in addition to these two classes of problems, other related or integrated

problems with similar logical structure have been treated as cutting and packing problems
(JUNQUEIRA| 2009).

Although the structure is the same for all cutting and packing problems, these models
can be further subdivided into categories. [Wascher, Haufiner & Schumann| (2007) propose
a new categorization rooted on a previous one developed by Dyckhoff (1990). In this new
typology, five criteria are used to describe the problems and categorize them, and all
problems where the assumptions in the criteria are broken are treated as variants. In the

following are the five criteria explained:

1. Dimensionality: problems are distinguished between one-, two-, and three-dimensional
ones. In the literature, there also cutting and packing problems with four geometric

dimensions or more (LINS; LINS; MORABITO) 2002), however, in this typology

they are considered variants of lower-dimensional problems;
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2. Kind of assignment: two basic situations are proposed, one where the output
value is maximized, and another where the input value is minimized. In both
assignments, a set of small items must be assigned to a set of large objects. In the
maximization version, the former is large enough that the latter is not sufficient to
contain all of the small items, removing the sub-problem of selecting large objects.
In this version, a subset of small items with maximal output value has to be selected
and assigned to the large objects. In the second kind of assignment, the set of large
objects is sufficient to accommodate all of the small items, removing the sub-problem
of selecting them. In this version, a subset of large objects with minimal input value

has to be selected, and every small item must be assigned to them;

3. Assortment of small items: three cases are considered, the first with identical
small items, the second with a weakly heterogeneous assortment of small items, and
the third with a strongly heterogeneous assortment of small items. In the first case,
the shape and size of the items is the same, possessing the same length, width and
height depending on the dimensionality, and the demand for the items is infinite. In
the second case, there only a few classes of small items in relation to the total number
of items for which the components have the same shape and size. Furthermore, the
demand for each class of items is either unlimited or relatively large in this case.
Finally, the third case contains only very few elements with the same shape and
size, and the demand for each type of item is one. In this typology, items with the
same shape and size but different orientations are considered different between one

another, and it is assumed that the demands for the items are uniform;

4. Assortment of large objects: for this criteria, only two possibilities are consid-
ered, one with only one large object, and another with several large objects. For
the first possibility, the singular large object can have its dimensions fixed, possess-
ing a predetermined shape and size, or one or more of its dimensions as variable.
For the second possibility, it is assumed that all large objects dimensions are fixed,
and the criteria is further divided into identical large objects, weakly heterogeneous
assortment of large objects and strongly heterogeneous assortment of large objects.
Furthermore, this typology only considers rectangular large objects, treating prob-

lems with non-rectangular ones as variants;

5. Shape of small items: this criteria is only sensible in a two- or three-dimensional
problem, and small items can be distinguished between regular (rectangles, circles,
boxes, cylinders, balls, etc.) and irregular. The precise definition of regular and

irregular is missing from Wascher, HauBner & Schumann| (2007), but a definition
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can be found in Bennell & Oliveiral (2009), where it is stated that a piece is irregular

if it requires a minimum of three parameters to identify it. For example, a rectangle
and a circle are regular since they can be described only by length and width and
by radius, respectively, whereas a trapezoid cannot be described so simply. It is

assumed that the rectangular items are only laid out orthogonally in this typology.

An overview of the categorization structure can be seen in Figure [3| in which the
combination of criteria relevant to the problem determines its level of complexity as either
“basic”, “intermediate” or “refined”. Moreover, problems variants are also considered on
the right side of the figure, and they emerge when a assumption in a criteria is broken,

such as the one mentioned for the dimensionality criteria, or when a uniform distribution

of demands is not the case such as in Riehme, Scheithauer & Terno (1996)).

Figure 3: Categorization of Cutting and Packing Problems according to the Five Criteria
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Source: |Wascher, HauBner & Schumann| (2007))

With the five criteria it is possible to create subcategories of cutting and packing

problems that have different combinations of criteria characteristics. Figure [4| contains
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the different nomenclatures given for intermediate problems, which can be further dif-
ferentiated based on dimensionality and shape of small items to categorize the refined
problems. These names are taken from the usual nomenclature in the literature, and in
Figure 4| the upper image contains the problems with output maximization, and the lower

image contains ones with input minimization.

Figure 4: Nomenclature of Intermediate Cutting and Packing Problems
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Single
onhe Identical Item Large Object Single
large object Packing Problem Placement Knapsack Problem
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I identical Large Object Multiple Identical
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fixed
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Heterogeneous Multiple
heterogeneous Large Object Heterogeneous
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MHLOPP MHKP
assortment
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items weakly h gy
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of large
objects
Single Stock Size Single Bin Size
identical Cutting Stock Problem Bin Packing Problem
SSSCSP SBSBPP
all Multiple Stock Size Multiple Bin Size
dimensions weakly Cutting Stock Problem Bin Packing Problem
fixed heterogeneous
MSSCSP MBSBPP
strongly Residual Residual
heterogeneous Cutting StockProblem Bin Packing Problem
RCSP RBPP
one large object Open Dimension Problem
variable dimension(s)

Source: Wascher, Haufiner & Schumann/ (2007)
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2.1.1 Cutting and Packing of Regular Items

In the cutting and packing literature, the most common assessed objects are rect-
angles, and this research has many applications that have been useful in a number of
industry fields, such as in chip design, integration of circuits, aerospace, apparel, platform
layout and chemicals (WU et al [2021). Furthermore, these problems have been proven
to be NP-complete (FOWLER; PATERSON; TANIMOTO, 1981)), which means that they

cannot be solved by polynomial-time algorithms.

One of the most traditional models for this type of problems comes from [Beasley
(1985)). In this research, a mixed integer programming model for placing small rectangles
inside a large one is developed. This problem can be classified as a two-dimensional rect-
angular problem, where the large object has fixed length and width and the objective is
output value maximization. In this model, the large rectangle’s positions in the x- and
y-axes are discretized in order to avoid the continuous nature of distances and formulate
a model with finite coordinates. With these integer coordinates, binary variables that
indicate whether a piece is placed with its lower left vertex in a certain position are for-
mulated. Furthermore, in the original paper the author also discussed possible extensions
of the model, contemplating multiple connected large rectangles and the so-called defects,
which prevent certain coordinates of having pieces placed in them. Figure |5/ shows an
example of a piece placed according to this model, where L and W represent the length
and width of the large rectangle/object, respectively, L; and W; represent the length and
width of the small placed rectangle/item, respectively, and p and ¢ represent the integer

coordinates of the bottom left corner of the placed rectangle:

Figure 5: Example of Beasley’s Model

W
Rectangle A
Piece 1
Wi
LI | Li
0 p L

Source: Adapted from |Beasley| (1985)

The original model by Beasley| (1985) has been further extended by Junqueira (2009),
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a research in which the author contemplates three-dimensional problems and explores
real-world restrictions that required modifications to the model to be contemplated. The
most important contemplated extension for this thesis was the multiple orientations of
the placed boxes, since it is assumed in the original model that the items are orthogonally
placed. For this to work, the author proposes that either each orientation of the boxes
should be considered a different item, or an additional index should be added to the

original binary variables with all the possible orientations of the boxes.

These extensions for real-world conditions are common in the rectangular packing

problems, and the main ones are, according to Junior et al.| (2022): weight distribu-
tion (QUEIROZ; MIYAZAWA| 2014)); load bearing (QUEIROZ; MIYAZAWA, 2013);
level packing (BETTINELLI; CESELLT; RIGHINT, 2008; BEKRAR et al), 2010; BEZ]
ERRA et al., 2020); positioning (SILVEIRA; MIYAZAWA; XAVIER| 2013; SILVEIRA;
XAVIER; MIYAZAWA| 2014; [KENMOCHI ot all 2009); packing (FEKETE; KAM
PHANS; SCHWEER), [2014); complexity (KIERKOSZ; LUCZAK|, 2014; SALTO; ALBA;
MOLINA| 2008; SUGI et al.| 2020)); cutting process (HAWA; LEWIS; THOMPSON| 2018;
RINALDI; FRANZ), 2007).

Besides rectangles, there is also a smaller literature for other regular items such as
circles, which can be useful in fiber optic cable manufacturing, container loading, cylinder
packing, dashboard layout (LAI et al., [2022) and in the woodworking industry
'TROZA; PRADENAS; PARADA| [2013; |SILVA et al., 2022).

2.1.2 Cutting and Packing of Irregular Items

The history of cutting and packing problems with irregular items extends over forty
years, and is one of the variants of the original cutting and packing problems to be
widely researched in the Operations Research field (BENNELL; OLIVEIRA} 2009)). These
variants are also called “nesting problem”, and have been proven to be NP-complete
(FOWLER; PATERSON; TANIMOTO), |1981)), similar to the version with regular items
(see Section . The applicability of the nesting problems literature can be seen in the

clothing industry, furniture, leather, glass, or sheet metal cutting (LEAO et al., 2020)).

Figure [0] shows an example of a nesting problem in the garment industry, in which a set
of sixty four pieces with regular and irregular items is feasibly packed into a rectangular
board.
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Figure 6: An Example of a Nesting Problem
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Source: Leao et al.| (2020)

Dealing with the geometry of irregularly-shaped items and guaranteeing that they are
correctly placed in the large object without overlaps is a much harder task than doing

the same for regularly-shaped, and, as a consequence, the results obtained so far in the
literature are much more limited regarding the size of the tackled problem (LEAO et al.,

2020).

There are several different methods used to contemplate the geometry of irregular

items, and a popular and simple one is described by |Oliveira & Ferreiral (1993)), in which

a raster method that discretizes the continuous nature of the large object is used. In
this model, the large object is a rectangle, and for each discretized integer coordinate of
this rectangle a binary variable denotes whether there is a piece in this position or not.
Figure [7] shows an example of how the irregular items were represented in the model by
Oliveira & Ferreiral (1993).

Figure 7: The 0-1 Raster Representation for Irregular Pieces
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Source: |Oliveira & Ferreiral (1993)

Other raster representations of irregular items were developed in the literature (SEGEN-
REICH; BRAGA, |1986; BABU; BABU, 2001)), but this method is not able to accu-

rately represent irregular items with non-orthogonal edges due to the nature of the raster

discretization. There are other methods that can represent irregular items with non-

orthogonal edges, such as direct trigonometry, no-fit polygon and phi functions, which
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have been effectively used in nesting problems (LEAO et al., [2020)).

The direct trigonometry method has its own set of modelling strategies to describe

irregular items, and one of the most common ones is the D-function (LEAO et al., 2020)),
that uses continuous variables to position the items (SCHEITHAUER; TERNO, [1993;
CHERRI et al| [2016; |(CHERRI; CHERRI; SOLER) [2018). This strategy determines

the relative position between a piece’s vertex and another piece’s edge to avoid overlaps

between them, and was derived from the equation of the distance between a point and

a line (LEAO et al,, [2020)). Another direct trigonometry strategy is the inner circle one,
where items are defined by a set of inscribing circles (JONES, 2014; ROCHA et al., 2016]).

Figure [§ shows a visual representation of the two strategies, with the D-function to the

left, and the inner circle to the right.

Figure 8: The D-Function and Inner Circles Direct Trigonometry Modelling Strategies

Source: [Leao et al| (2020)

2.1.3 Polyominoes and Tetrominoes

The irregular items that concern this thesis are called “tetrominoes”, which were first

introduced by |Golomb| (1954 as a subset of the so-called “polyominoes”. A polyomino

can be defined as a simply-connected set of n squares which are “rook-wise connected”,
which means that a rook placed in any square of the nm-omino must be able to get to
any other square in a finite number of moves. Cutting and packing problems involving
polyominoes have real-life applications in different industries. These include sheet metal
stamping, design of printed circuits boards, timber cutting and layout of newspaper pages,

where the geometries of the shapes involved in these processes are similar to polyominoes

(KASHKOUSH: SHALABY; ABDELHAFIEZ, 2012).

The polyominoes study has been historically made by mathematicians in the “tiling”
field of study (GOLOMB [1966; BODINTI, 2003; KLARNER, 1969; REID)| |1997, 1997),

which is tied to Operations Research’s cutting and packing problems. It is possible to

describe some tiling problems through cutting and packing problems, and some authors,
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although not many, recently brought the ”polyominoes tiling” topic into the Operations
Research literature, where the problems are mainly classified as two-dimensional problems
with one large object and irregular small items, and the polyominoes are described through

the constrains of the model.

The first author to formalize a Operations Research model for the cutting and packing
of polyominoes was Kashkoush, Shalaby & Abdelhafiez (2012). In this research, a mixed

integer linear programming model was introduced. The large object was a rectangle with

fixed width and variable length that could be subdivided into unit squares. The objective
of the model was minimizing the large object’s variable length, though indirectly, by
penalizing the placement of polyominoes at higher lengths. A solution produced by this
model can be seen in Figure [9] in which the numbers represent the penalties that are

summed in the objective function and minimized:

Figure 9: Solution for the Model proposed by [Kashkoush, Shalaby & Abdelhafiez (2012)
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Source: Kashkoush, Shalaby & Abdelhafiez (2012))

Another author of polyominoes cutting and packing problems was motivated by a new

application of polyominoes tiling, the design of phased array antennas (KARADEMIR;
PROKOPYEV; MAILLOUX]| [2016). In this problem, the large object is a rectangle with

fixed length and width, and this author modeled the polyominoes through a completely
different logic, using a mixed integer non-linear programming model, which was then

linearized. A solution produced by this model can be seen in Figure [9}
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Figure 10: Solution for the Model proposed by [Karademir, Prokopyev & Mailloux| (2016))
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Another author researches the tiling of polyominoes in an irregular large object that

is composed of “rook-connected” squares, maximizing the large object occupation by

assigning “weights” for each polyomino and maximizing their sum (KITA; MIYATA|
2021). The utilized model uses mixed integer programming, and the purpose of this

research was generating polyominoes puzzles, which is a theme seeing in other literature
for these objects (LO; FU; LI, 2009)). A solution produced by this model can be seen in
Figure [9}

Figure 11: Solution for the Model proposed by Kita & Miyata (2021))
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Source: Kita & Miyata) (2021)

The polyominoes with four squares are defined as “tetrominoes”, and they can come
in seven different shapes considering the possible reflections of a tetromino as different
shapes, and the possible rotations as the same shape. These seven types of tetrominoes

can be seen in Figure |12}
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Figure 12: Seven Types of Tetrominoes
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These items are famous due to the popular game “Tetris” (TETRIS, 2022)), and each

shape has a different coined name due to the letters that they resemble: “O”, “I” “S”,
77, “L7, “J7 and “T”. These items are the main focus of this thesis, and the study

of two-dimensional cutting and packing problems with tetris-like items can be useful

in the arrangement of cargo in vehicles and space modules (FASANO, 2013), and for

dealing with particular cases in the related area of project scheduling problems in which

activities may consume different amounts of a given resource throughout their execution

(HARTMANN; [2000). Furthermore, every application that pertains polyominoes also

pertains tetrominoes, except for instances where specific n-ominoes with n # 4 are at

issue.

The literature regarding tetrominoes specifically is even smaller than the one per-
taining polyominoes, and, similarly to the polyominoes one, the problems are mainly
classified as two-dimensional problems with one large object and irregular small items,
and the tetrominoes are described through the constrains of the model. The most relevant
research in the subject was made by , where the author defines “tetris-like”
items as a cluster of mutually orthogonal parallelepipeds. This definition of a tetris-like
item makes the classification of the items as regular or irregular difficult, and this in

turn allows the classification of problems containing these items as either extensions, or

variations of the problems described in [Wascher, Haufiner & Schumann| (2007). In the

research that coined this term, the placement of tetris-like items in a convex large object
was modeled through a mixed integer programming model. One example of a tetris-like
item placed in a convex large object can be seen in Figure [13] in which k£ and h represent

the item’s parallelepipeds:
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Figure 13: Example of a Tetris-like Item placed in a Convex Space

W

Source: [Fasano| (2013)

2.2 MIP Heuristics

An heuristic can be defined as a procedure with a collection of rules or steps that
guides one to a solution that may or may not be the optimal one (LAGUNA; MARTI,
2013). The solution set of the majority of real world optimization problems is often large

or infinite, and a heuristic can assist one in finding acceptable solutions to a problem.

This thesis concerns heuristics used in Operations Research models that require mixed
integer programming to be solved (see Section . These types of problems belong to
the set of NP-complete problems, since they are combinatorial in nature, and this means

that the solution time scales exponentially as the problem size increases in the worst-case
scenario (FLOUDAS; LIN, 2005).

According to Wolsey| (1998)), there are many reasons that might cause one to employ
an MIP heuristic. The first, and perhaps the most important one, is that a solution is
required rapidly, what might be even more relevant if the instance is so large that it
cannot be formulated as a MIP model of reasonable size. Furthermore, there are certain
combinatorial problems that, such as vehicle routing and machine scheduling, for which

it is easy to find feasible solutions by analyzing the model’s structure.

Given the wide range of applications of MIP in real-world problems, it is only natural
that heuristics that are faster than the optimization procedure would emerge. There
are many of these procedures in the MIP literature (BALAS et al.| [2001; SALTZMAN;
HILLIER, 1992}  GLOVER; LOKKETANGEN: WOODRUFE| 2000; BALAS; MARTIN]|
1980), but this thesis concerns only the relax-and-fix heuristic, introduced and detailed

in the next section.
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2.2.1 Relax-and-Fix

The MIP relax-and-fix heuristic was first introduced by Dillenberger et al.| (1994]) for
a lot-sizing problem, where the goal was to optimize the production volumes of various
part types across different machine groups and in different time periods. As stated in the
aforementioned research, the relax-and-fix algorithm does not consider the integrality of
all binary decision variables at once, but successively. This heuristic consists basically in
considering iteratively the integrality of some subset of binary variables and fixing their

values at the end of an iteration.

Figure[14| can be used to better visualize the procedure of the heuristic. In this image,
the horizontal line represent the set of binary variables present in a MIP model, and this
set is divided into four others. The “integer” subset is represented by I} in iteration k£ and
contains the originally binary variables which will have their integrality considered, and,
therefore, will be set as binary during the iteration. The “fix” subset is represented by Fj,
and contains the variables which will have their values fixed at the end of iteration k with
the results generated from the iteration. The “fixed” subset contains the values of binary
variables which were fixed in previous iterations and will remain so until the last iteration
of the heuristic. Finally, the “relaxed” subset contains the originally binary variables
which will not have their integrality considered, and, therefore, will be set as continuous
during the iteration. At the end of the heuristic, the subset of “fixed” variables coincides
with the complete set of originally binary variables, and a solution for the problem is
obtained (ABSI; HEUVEL] 2019).

Figure 14: Hlustration of the Relax-and-Fix Heuristic
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iteration
ﬁX(F1> ‘
‘ integer(I5) ‘ relaxed iteration 2
1reration
fixed ‘ fix(Fy) ‘

‘ ‘ integer(/3) ‘ relaxed ‘
‘ fixed ‘ fix(F3) ‘ ‘

iteration 3

Source: |Absi & Heuvel (2019)

This heuristic is used very frequently in variants of lot-sizing problems (ABSI; Kedad-
Sidhoum), [2007; /ARAUJO; ARENALES; CLARK, 2007; |CLARK], 2003; FEDERGRUEN;
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MEISSNER; TZUR, 2007 MERCE; FONTAN, [2003; STADTLER, [2003; AKARTU-
NALI; MILLER], 2009), where the topic concerns production planning across time periods
and the subsets of binary variables are usually based on these different timeframes. It
is always seen in the literature for other problems that also concern scheduling, time-
dependent tasks, such as the traveling umpire problem (OLIVEIRA; SOUZA; YUNES,
2014), where the topic concerns the minimization of distances traveled by umpires in
tournaments with several rounds and the subsets of binary variables are divided accord-
ing to the rounds numbers, and also the maritime inventory routing problem (FRISKE;
BURIOL; CAMPONOGARA| 2022), where the topic concerns the optimization of ship
deliveries across different ports and the subsets of binary variables are divided according

to time, since the schedule for the deliveries is also of concern.

However, the relax-and-fix is also used effectively in other Operations Research prob-
lems that do not necessarily take time into account, such as in the grid-based location
problem (Noor-E-Alam; DOUCETTE, 2012), where the topic concerns resource alloca-
tion across different coordinates in a grid and the subsets of binary variables are divided
according to coordinates, and also in the controlled tabular adjustment problem (BAENA;
CASTRO; GONZALEZ, 2015), where the topic concerns tabular data protection, and the

subsets of binary variables are divided according to cells in the table.

Another type of problems in which relax-and-fix heuristics have been applied is the
one this thesis concerns, cutting and packing problems. Keeping to the main trend of
the heuristic of subdividing the variables based on time periods, Oliveira et al. (2020)
describes the utilization of a relax-and-fix heuristic for an extended version of an one-
dimensional Single Stock Size Cutting Stock Problem (see Figure {)), where the delivery

date is also considered in its formulation.

More interestingly for this thesis, |Cherri et al.| (2016)) describes the utilization of this
heuristic for a two-dimensional Open Dimension Problem with irregular items, where
the large object is a rectangle with a fixed width and an infinite length, and the model’s
objective is to minimize this length. In this research, the developed heuristic was a hybrid
of well-know heuristics, and relax-and-fix was the first step of the complete developed
heuristic, being used to provide an initial solution to the problem. In this version of the
relax-and-fix heuristic, the binary variables were subdivided according to the positions of
the small items in the large object, and in order to determine the sizes of the generated
subsets the authors developed an arbitrary method that depended on the characteristics

of the instance.
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Finally, no researches were found where a relax-and-fix algorithm was used in a

polyomino-related cutting and packing problem.

2.2.2 Fix-and-Optimize

The fix-and-optimize heuristics, also called “exchange” heuristics, are described as an
improvement or a variation of the relax-and-fix heuristics (ABSI; HEUVEL| 2019). This
heuristic, similarly to the relax-and-fix, consists of an iterative procedure where the set of
binary variables is subdivided and each iteration considers the integrality of only a subset
of the variables. However, in the fix-and-optimize heuristic, there are only two subsets
of variables in each iteration: one that contains the originally binary variables which will
have their integrality considered, corresponding to the “integer” subset in the relax-and-
fix heuristic (see Figure , and another one that contains the values of binary variables
which were previously fixed, which is similar to the “fixed” subset in the relax-and-fix
heuristic (POCHET; WOLSEY], [2006)).

The main difference between the two algorithms is that the fix-and-optimize heuristic
requires a previously obtained solution that will be used for the first iterations of the
algorithm as the “fixed” subset. This initial solution is obtained through other heuristics,
such as the relax-and-fix heuristic, and each iteration of the fix-and-optimize heuristic will
remove a subset of the fixed variables and treat them as binary again, transforming them
into the “integer” subset. Originally, the iterations stopped once one of them could not
improve the result of the objective function, but it is possible to set other termination
criteria for the heuristic. Furthermore, the “fix” subset of the relax-and-fix heuristic coin-
cides with the “integer” subset in this case, since all of the variables with their integrality
should be fixed at the end of an iteration (POCHET; WOLSEY] 2006)).

The fix-and-optimize heuristic is also used in lot-sizing problems, and the criteria for
dividing the variables is also dependent on the configuration of the algorithm. Helber
& Sahling (2010) describes an application of the fix-and-optimize heuristic for a multi-
level capacitated lot-sizing problem, where the authors experiment with three criteria for

subdividing the binary variables: product, resource/machine and time period.

This heuristic is also seen in other scheduling-related problems, such as the fleet sizing
and replenishment planning problem (DASTJERD; ERTOGRAL; [2019), which concerns
routine supply runs for various customers and the subsets of binary variables are divided
according to the various customers. It is also seen in the high school timetabling problem
(DORNELES; ARAUJO; BURIOL, 2014)), where the topic is the allocation of teachers to
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classes in different timeframes and the subsets of binary variables are divided according
to classes, teachers or days. Figure |15 shows the initial solution and three iterations of
the fix-and-optimize heuristic from left to right used in the aforementioned high school

timetabling problem research, with the class as the criteria for subdividing variables:

Figure 15: Example of a Fix-and-Optimize Heuristic
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Source: Dorneles, Aratjo & Buriol| (2014)

Finally, no researches were found where a fix-and-optimize algorithm was used in a

polyomino-related, or in any sort of cutting and packing problem.
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3 MATHEMATICAL MODELING

In this chapter, the developed mathematical models that encompass all characteristics
of the tetris-like items packing maximization and minimization problems are discussed.
To describe them, two Operations Research cutting and packing formulations (see Sec-
tion , each with one objective function and various constraints, were developed. These
models are inspired in Beasley| (1985), Fasano| (2013) and |Junqueira (2009) (see Chap-
ter [2)).

3.1 Mathematical Representation of Tetrominoes

In order to be able to come up with a model that could describe a tetris-like item,
firstly it was decided that these items would be modeled with two rectangles. After
this, the next logical step is evaluating the positional relationship between the rectangles,
which must be determined to create tetris-like items. Furthermore, since the intention
is to describe a mathematical model that can rotate the pieces, this evaluation must be
performed in every possible rotation. To do this, each item “L”, “J”, “T”, “S” and “Z” (see
Figure was analyzed in four counter-clockwise rotations: 0, 90, 180 and 270 degrees.
Furthermore, the model should contemplate not only tetrominoes, but all shapes that
might resemble the original tetrominoes shapes, the tetris-like items (see Section ,

in order to be more general and useful in more situations.

This analysis resulted in images for each shape and rotation, where the position of the
lower-left corners of the rectangles was analyzed, which was inspired in Beasley]| (1985)),
where the formulation of the rectangles follows this logic. Furthermore, for the 0 degrees
rotation, the upper rectangle was arbitrarily defined as rectangle 1, and the lower rectangle
as 2, with the other rotations following this logic, but rotated. In these images, p describes
the position of the lower-left corner of the first rectangle in the x-axis, ¢ describes the
position of the lower-left corner of the first rectangle in the y-axis, 1 and w1 describe the

length and width of the first rectangle, and [2 and w2 of the second rectangle. This was
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needed to provide a visual basis for the formulation of the model, and the numeration of
the rectangles could have been inverted without the loss of generality, not affecting the

model.

Figure [16] in the following displays the positional relationship of the L-shaped items
in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to
the lower-right image. The formula for the position of the lower-left corner of the second
rectangle was derived by defining the L-shaped items as items in which the left sides
of both rectangles are aligned in the 0 degrees rotation, with the remaining rotations

following suit.

Figure 16: Mathematical Representation of L-shaped Items

o° 90°
1
2
(p.q) 1
2
(p.a) (p+wi,q)
(p,g-w2)
180° 270°
2
1
(p+11-12,g+w1) 2
1 (p,q)
(p-w2,q+I1-12)
(p.a)

Source: The Author

Figure [17] in the following displays the positional relationship of the J-shaped items
in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to
the lower-right image. The formula for the position of the lower-left corner of the second
rectangle was derived by defining the J-shaped items as items in which the right sides
of both rectangles are aligned in the 0 degrees rotation, with the remaining rotations

following suit.
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Figure 17: Mathematical Representation of J-shaped Items
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Figure |18 in the following displays the positional relationship of the T-shaped items

in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to

the lower-right image. The formula for the position of the lower-left corner of the second

rectangle was derived by defining the T-shaped items as items in which both rectangles

are vertically aligned in the 0 degrees rotation, with the remaining rotations following

suit.
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Figure 18: Mathematical Representation of T-shaped Items
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For the S- and Z-shaped items, another parameter must be analyzed since it is not
possible to create formulas that relate the positions of the lower-left corner of the rectan-
gles with only the given parameters. How far the second rectangle is from the first must
also be measured, what is described by the parameter Al. This parameter can be defined
as the distance between the left sides of the first and second rectangles in S-shaped items,

and between the right sides in Z-shaped items.

Figure [19]in the following displays the positional relationship of the S-shaped items
in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to
the lower-right image. The formula for the position of the lower-left corner of the second
rectangle was derived by defining the S-shaped items as items in which the left sides of
both rectangles are distant Al units in the 0 degrees rotation, with the remaining rotations

following suit.
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Figure 19: Mathematical Representation of S-shaped Items
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Figure 20| in the following displays the positional relationship of the Z-shaped items
in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to
the lower-right image. The formula for the position of the lower-left corner of the second
rectangle was derived by defining the Z-shaped items as items in which the right sides of
both rectangles are distant Al units in the 0 degrees rotation, with the remaining rotations

following suit.
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Figure 20: Mathematical Representation of Z-shaped Items
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It is important to notice that the presented positional relationships between the rect-
angles for each item type are not enough to maintain the intended shape of the item. For
example, if the length and width of both rectangles are equal, they would result in rect-
angles 1 and 2 being squares, and by using the described positional relationships it would
not be possible to create a L-, J- or T-shaped item since the result would be a rectangle
with the larger side twice the size of the smaller one. Therefore, these relationships are
only valid if the dimensions of the items also make sense. One method to guarantee that
the items will have the intended shapes is used in this thesis for the generation of the
instances (see Section .

3.2 Developed Models

Following the typology of Wascher, HauBner & Schumann| (2007) (see Section [2.1]), the
developed models for describing the placement of tetris-like items are two-dimensional.
Furthermore, the tetris-like items can not be easily classified as regular/rectangular or
irregular in this model due to the chosen modelling logic, which uses two rectangles to
form the different tetris shapes. The developed model also allows for generating instances

with different assortments of small items, from identical ones, if the instance has only
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one item with replicas, to strongly heterogeneous items, if it has various. Regarding the
assortment of large objects, this model contains one large object, denominated “board”,
and two different formulations with non-overlapping constraints were formulated to con-
template both kinds of assignments: output maximization and input minimization. In
the maximization problem, the board has both dimensions fixed and the objective is to
maximize the sum of the value of each item when arranging the tetris-like items (i.e., not
necessarily all available items are used). In the minimization problem, the length of the
board is fixed (x-axis) and the width is variable (y-axis), and the objective is to minimize
the variable dimension of the board when arranging the tetris-like items (i.e., necessarily
all available items are used). Given these characteristics, the maximization model can be
classified as a variation/extension of a 2D-R-IIPP/SLOPP/SKP problem, depending on
the assortment of small items, and the minimization model as a variation/extension of a

2D-R-ODP problem.

The indexes, parameters and variables used in this formulation are shown in the fol-

lowing:

Indexes:
i : index for the item;
f : index for the rectangle number in tetris type items (1 or 2);
g : index for the rotation of the item (1 for 0%, 2 for 902, 3 for 180° or 4 for 270°);
p, s : indexes for the position in the board of the rectangle’s lower-left corner relative to
the x-axis;
q,7 : indexes for the position in the board of the rectangle’s lower-left corner relative to

the y-axis.

Sets:
I : set of all items;
IR : set of rectangular items;
I, 1,17, Ig, I : sets of items of types “L”, “J”, “T”, “S”, “Z”, respectively;
X : set of all possible integer positions on the board length (x-axis);
Y : set of all possible integer positions on the board width (y-axis);
X rq : set of possible positions on the board length of rectangle f of item ¢ with orienta-
tion g;
Y 14 : set of possible positions on the board width of rectangle f of item ¢ with orientation

g.
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Parameters:
v; : value of item g;
b; : maximum number of replicas of item i that can be placed inside the board (only in
the maximization problem);
B; : exact number of replicas of item ¢ that must be placed inside the board (only in the
minimization problem);
(L;,r,w; s) : length and width, respectively, of rectangle f of item 4;
Al; : distance in length between the left sides of rectangles 1 and 2 for items of type “S”,
and between the right sides for items of type “Z”;
(L, W) : length and width of the board, respectively.

Decision variables:
Tifgpq - Dinary variable, which equals 1 if rectangle f of item ¢ with orientation g is
placed with its lower-left corner at position (p, q), and otherwise equals 0;

W : non-negative real variable, which corresponds to the variable width of the board (only

in the minimization problem).

Additionally, following the inspiration in the models from Beasley (1985), all the
dimensions of the small and large items in the model (I; ¢, w; s, Al;, L and W) have an
integer value, as well as the possible positions p and ¢ of the rectangles in the board. This
limits the number of p and ¢ values, which would be continuous and infinite otherwise. In
the next section, the exact discretization of the board is described, and sets X, Y, X; ¢,
and Y, , —are defined. Assuming that all possible integer points in the board are used as
p and ¢ positions in a board with length L = 5 and width W = 5, Figure [21| shows an
example of a rectangle with no rotation and length 2 and width 1 placed in position p = 1

and ¢ = 2:
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Figure 21: Example of a 5x5 Board with a 2x1 Rectangle

W=5
=4 ¢ ° ° B °
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=2 ¢ . °
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p=0 p=l p=2 p=3 p=4 L=5

Source: The Author

The constraints to which the models for both the maximization and minimization

problems are subject are shown in the following:

2
2.0 2 2. gt

el f=1{peX; s1ls—l; ;+1<p<s} {q€Yi s 1|t—w; s +1<q<t}

2
2.2 2 2. szt

1€l f=1{peX; fols—w; s +1<p<s} {q€Y; s 2|t—1; +1<q<t}

2 (3.1)
§ § § E Tif3,pqt
el f=1{peX; ;3ls—l; ;+1<p<s} {q€Y; s 3lt—w; s +1<q<t}
2
E E E E Tifapq <1, Vs X,VteY
1€l f=1 {peX; ¢ 4|s—w; s +1<p<s} {q€Y; s alt—1; +1<q<t}
Ti 1 pg-wis = Tillpg Vi€ L, Vp € Xip1,Vq € Yifa
Ti22ptwing = Til2pg Vi€ L, VD€ Xjpa,Vq €Yo (32)
xi7273,17+li,1—li,2:q+'wi,1 = xi,173)p7q7 v/l/ 6 IL,Vp e X7‘7f737vq E Y;7f73
Ti2,4,p—w; 2,q+li1—li2 = Ti,1,4,p,q5 Vi€ I, Vp € Xi,f747vq € Yi,fA
Ti 20 pts 1 —liog—win = Tillpgs Vi E L5, Vp € Xif1,Vq €Yga
L322 ptwirqtlia—liz = Til2pg Ve E L1, Vp € Xipa,Vq € Yifo (3.3)

Ti23pgtwi, = Tildpg VEE L5, VD€ Xip3,Vq € Y3

Ti2dp—wizg = Tilapg Vi€ L5,Vp € Xifa,VqEYifa
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Ii2 1p+li,1*li,2 d—wi 2 = Ti1,1,p,q5 Vi € IT,Vp € X@fJ,V(] € }/i’ﬁl
14yt 2 ) T

x li1—lia — &5 Vi I,V X; \4 Y;
02,2, p+wi 1 ,q+ 1,121,2 4,1,2,p,q> €17, Vp € Ay 52,Vq € Yj 12

(3.4)
xi,2,3,p+%,q+wi71 = Ti1,3,p,q> Vi c IT,Vp € X@f,g,vq € }/Z"f,g
xi,2,4,p—wi,2,q+w = xi,1,4,p,q7 \V/Z - IT,Vp € Xi7f,4,Vq € }/i7f,4

Ti2lp-Alig-wio = Tillpg Vi€ Is,VD € X;p1,Vq €Y1
Ti22ptwii,a-Al = Til2pg VI E Is,Vp € Xi 52, Yq € Yfo (3.5)
Ti23ptli1—liat Algtwiy = Til3pg, Vi€ Is,Vp € X;73,Vq €Y y3 |
Ti2dpwioqtlia—liotAl; = Tildpg Vi€ Is,Vp € Xi54,Vq €Y 4
Ti21 ptliy—liat Alig—wia = Tillpg, Vi€ I7,YD € Xip1,Yq € Yiga
Ti22 ptwir,gtlia—liatAli = Til2pq Vi€ 17,V € X;12,Yq €Yo (3.6)

Ti23p-Algtwis = Til3pg Vi€ I7,YD € Xif3,Vq € Y3
Ti2dp-wisq-Al = Tildpg Vi€ I7,YD € Xi74,Yq € Yisa
Tifgpg €10,1}, Viel, f=1,2,g=1,2,3,4Vpe X, 5, Vg€ Y,y (3.7)

In formulation - , constraints guarantee that at most one rectangle
positioned with its lower-left corner at some point (p,q) will contain the point (s,t).
Constraints - relate the position of the lower-left corners of rectangles 1 and 2
of each tetris-like item to create the desired shape of items of types “L”, “J”, “T” 6 “S”
and “Z”, respectively, for all four possible orientations. Finally, constraints define

the domain of the decision variables for the items, which must be binary.

In order to complete the formulation of the maximization model, the constraints (3.1))
- (3.7) that pertain both models must be added to the objective function and constraints

in the following:

4
maxzz Z Z Vi % Ti1gpq (3.8)

el g:l pEXi,l,g qem,l,g

4
Z Z Z Tifgpg < biy Vi€l (3.9)

9=1 peX;1,4q€Yi1,q

In the formulation (3.8)) - (3.9) with (3.1]) - (3.7)), the objective function (3.8)) aims at

maximizing the sum of the values of item replicas placed and arranged within the board. It
is important to notice that if the value v; equals the area of the item (v; = E?lei, FRW; f),

then this objective function corresponds to maximizing the total area of item replicas
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placed within the board. Constraints ensure that the number of replicas of each
item within the board is not above the stipulated limit. For both these constraints, it
was decided that only the variables pertaining rectangle 1 are used, ignoring the ones
pertaining rectangle 2, but it is possible to use the second rectangle instead of the first
one in both these equations with no effects on the model whatsoever. The decision to
use the first rectangle came from the fact that the position of the second rectangle was
derived from the position of the first one, and, therefore, continuing to use rectangle 1 as

the “main” rectangle follows logically.

In order to complete the formulation of the minimization model, the constraints (3.1))
- (3.7) that pertain both models must be added to the objective function and constraints

in the following:

min W (3.10)

4
Z Z Tilgpq = Bi, Vi€l (3.11)

g:l peXi,l g qeyi,l,g

Z Z Tif1pq * (4 + wig)+

i€l f=1
ZZCM opq * (@ +lig)+
el f 1 (312)
ZZ”CZJ&M (¢ + wi )+
i€l f=1
Zzwz,f, e * @+ L) <W, YpeX,VgeY
icl f=1
WeR* (3.13)

In the formulation (3.8)) - (3.13]) with (3.1]) - (3.7]), the objective function (3.8)) aims at

minimizing the value of the variable W, which represents the final board width required
to arrange all items as compactly as possible. Constraints are similar to constraints
in the maximization problem, but instead of ensuring that the number of replicas of
each item within the board is not above a stipulated limit, they ensure that the number of
replicas is equal to the stipulated value B;. Constraints ensure that the replicas of
the items are arranged below the variable width W. Finally, constraints define the
domain of the decision variable for the board’s width, which is the positive real numbers,

although in the end the variable will have an integer value due to the nature of the board’s
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discretization.

Furthermore, for the minimization problem a lower bound for W is given to the
model and it is addressed in this thesis as LowBo. The value of this bound is obtained
by calculating the total area of the items in I for all their replicas B; using the length
l;;y and width w; ¢ of each item, then dividing the resulting value by the length of the
board L, and, finally, rounding the result to the closest integer above it. The reasoning
for this calculation comes from the fact that, in a best-case scenario, the placed replicas
of the items would form a rectangle with length L, and W would consequently be equal
to the width of this rectangle. Since W is an integer, rounding this width to the closest
integer above it provides a slightly better lower bound. One can better imagine this ideal
situation by supposing that the items could assume a “liquid” form and occupy the board

from bottom to top, resulting in the minimum possible board width.

3.3 Grid Discretization

The first step in generating the variables x; f4, 4, is discretizing the board and gener-
ating sets X and Y. In the last section, an example of a board where all possible integer
positions were used can be seen in Figure [21] a method of discretization called “full sets”.
One interesting question to ask is: could the discretization of the board’s positions be
made in such a way that less points are generated, and no significant solutions are lost
in the process? This is relevant due to the fact that less generated points implies less

generated variables, which in turn results in less work for the solver.

This question has been answered for models that only depict rectangles, and indeed
there are methods for generating variables that produce less points. In Herz| (1972)) and
Christofides & Whitlock (1977) the “normal patterns” or “conic combinations” methods
are discussed. These authors mathematically proved that, without losing relevant solu-
tions, one can move a rectangle downwards and to the left, until the left and bottom
sides of the rectangle either touch the left and bottom side of the board, or touch the
right and upper side of another rectangle. This means that only the points which are a
combination of the dimensions of the rectangles must be generated for this board. For
example, suppose one has only two rectangles to place on a 10x10 board, rectangle 1
with a length of 3 and width of 2, and rectangle 2 with a length of 4 and width of 3,
and no rotations are allowed. Following the normal patterns logic, there are only four
significant solutions, which are presented in Figure [22 in the following. In this example,

the discretization of the board on the x-axis only has to contemplate the combinations of
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the lengths of the two rectangles (3 and 4), and only the points p = 0, 3, 4,7 would have to
be generated, instead of p = 0,1,...,9. On the y-axis, the discretization would only have
to contemplate the combinations of the widths of the two rectangles (2 and 3), and only
the points ¢ = 0,2, 3,5 would have to be generated, instead of ¢ = 0,1, ...,9. Furthering
the example, if there was one more rectangle with length 1 and width 1, the generated p
values would be p = 0,1,3,4,5,7,8, with p = 5 deriving from the combination 144 and
p = 8 from 3+4+1, while the generated ¢ values would be ¢ =0,1,2,3,4,5,6, with ¢ =4
deriving from the combination 143 and ¢ = 6 from 2+3+1.

Figure 22: Possible Solutions for the Normal Patterns Example

Source: The Author

This method of board discretization can be extremely effective in reducing model com-
plexity. In the mentioned example with two rectangles, the number of (p, ¢) combinations
was reduced by 84%, and by adding the third rectangle this reduction comes down to
51%. However, in order to apply normal patterns in a model with tetris-like items, some
adaptations are necessary. Firstly, it is not possible to only use the lengths /; y and widths

w; ¢ to generate the combinations, since the intricate positional relationship between the
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two rectangles that compose a tetris-like piece creates other dimensions that must be
considered in order to correctly generate the positions along the axes. A simple example
comes from the S-shaped items, which require the position p = Al; to be generated with
the 0 degrees rotation, in order to place the first rectangle of the item. To obtain all the
dimensions necessary for a normal patterns discretization, it is necessary to calculate the
lengths and widths of all the rectangles generated by superimposing a large rectangular
“hull” on a tetris-like item that extends from its lower-left corner to its upper-right corner.
This is shown in Figure [23|in the following, where the relevant dimensions are represented
by double-headed arrows, and the items are displayed in the “L”,“J”,“T”,“S”,“Z” order,
from the upper-left image to the bottom-right one.

Figure 23: Necessary Dimensions for Normal Patterns Generation

Source: The Author

Even with all the extra dimensions calculated, which can be performed with the
parameters provided to the model, there are still modifications that need to be made in
the normal patterns generation to adapt it to the tetris-like items. For rectangles, the
number of values that need to be combined is always equal to the total number of replicas,
meaning that if one has only one rectangle, the only relevant coordinates are (0,0) and the
coordinate for the length of the rectangle in the x-axis and for the width of the rectangle
in the y-axis. If one has two rectangles, the combination of the lengths and widths of both

of them needs to be added to the set of coordinates. If one has three, all combinations of
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three dimensions must be added for each axis, and so on. For tetris-like items, however,
each replica contains multiple dimensions that have to be combined in order to generate
the essential coordinates for that piece, what makes this process very complex using the
usual conic combinations method. Moreover, due to the concave nature of the items,
it is possible that positions where one replica “fills another’s gap” are favorable for the
solution, such as the one in Figure [24] in the following, and some of the necessary values

along the axes might not be generated by this method.

Figure 24: Example of a Position where Two Tetris-like Pieces “Fit”

Source: The Author

One possible solution to these challenges, which is used in this thesis, is generating
all possible combinations for all dimensions in Figure along both axes to adapt to
the dimensional requirements of tetris-like items, and also adding the reflection of these
combinations in regards to the opposite side of the board (L —p or W — ¢) to incorporate
the positions where tetris-like pieces “fit” into the method. Take for instance one rectangle
of length 4 and width 5 in a board with length 10 and width 10: applying this adapted
methodology, the length and width would have to be used in the combinations for both
axes if rotation was allowed, and all combinations of these values that are esmaller than
the dimensions of the board would be part of sets X and Y. The result would be that
p=q=0,4,58 9 without considering the reflection on the opposite sides of the board,
and p = ¢ = 0,1,2,4,5,6,8,9 after adding the reflections, only a 20% reduction from
the full set. This solution is not as impactful as the original normal pattern generation,
especially as the number of items increases and dimensions are added to the set of values
to be combined, however, it can still significantly reduce the number of variables for the
solver. Furthermore, unlike the original conic combinations for rectangles, there is no

analytical proof that this adapted version does not cause information loss. This is very
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unlikely, since the adaptations to the original normal patterns generations were carefully
developed precisely to avoid this. However, for this reason the effectiveness of this method

is tested and compared to a full set board discretization in Chapter [5

After discretizing the board, the variable generation is a simple process. It is only
necessary to take the generated X and Y sets, and for each item ¢ and rectangle f and
orientation g remove the values that are above the related board dimension minus the
related item dimension to create sets X, s, and Y; s, (L —{; y and W —w; s for g = 1 and
3,and L —w,; s and W — 1, s for ¢ = 2 and 4). This sets are in turn used to generate the
variables z; ¢4, , for p € X; s, and g € Y; 5 ,. As an example, take a rectangle of length 5
and width 4 and two given sets X and Y. To generate X ; ,, one would take all the values
in X that are equal to or smaller than L — 5 for ¢ = 1 and 3, and equal to or smaller than
L — 4 for g = 2 and 4, whereas to generate Y; , one would take all the values in Y that
are equal to or smaller than W —4 for ¢ = 1 and 3, and equal to or smaller than W —5 for
g =2 and 4. It is important to observe that rectangular items, that belong to Ig, do not
have a second rectangle and only have two rotations, which means that x; s, ,, variables

for these items are only generated for f =1 and g = 1, 2.

With the grid discretization methods described in this section it is possible to run the

model with a solver.
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4 SOLUTION APPROACH

In this chapter, the heuristic algorithms developed for both the maximization and
minimization models are discussed in detail, in order to expose the intricacies of the

heuristic algorithms that can affect the obtained results.

4.1 Relax-and-Fix Heuristic

As mentioned in Section [2.2.1] a relax-and-fix heuristic divides a MIP problem into
sub-problems by determining subsets of variables that, in an iteration of the heuristic, are

either fixed, continuous, or binary.

However, this definition allows several parameters to be different between relax-and-
fix algorithms, and all the relevant ones are discussed here. First of all, the developed
algorithm does not directly divide the variables into subsets, but rather divides the board
width (or initial board width in the minimization case) into horizons. In a given iteration,
the board can be divided into four horizons, with the first one placed in the bottom of

the board, and the last one at the top of the board, what can be seen in Figure [25}
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Figure 25: One Iteration of the Relax-and-Fix Heuristic
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Source: The Author

Each horizon can be defined as follows:

1. Previously fixed variables: contains z; 4, , variables that have been fixed in
previous iterations if their value was decided to be 1, and x; ¢4, , binary variables
that were not fixed in previous iterations since their value was deemed as 0. Not
fixing variables, whose value was deemed as 0 in previous iterations is intended to
give the chance for following iterations to use empty spaces to place new pieces that

might require it.

2. Variables to fix: contains binary z; 7,4, , variables that will either be fixed as 1
at the end of the iteration if decided by the heuristic, or remain as binary if the

algorithm sets their value as 0.

3. Insightful variables: contains z; s 4, , binary variables that will not be fixed, in-
dependently of the algorithm’s decision. This horizon is optional, since it is not
necessary for a relax-and-fix heuristic, and also increases the number of binary vari-
ables in an iteration, slowing the algorithm down. However, if used, this horizon
allows the heuristic to choose better placements of the pieces by giving the algo-
rithm the ability to accommodate for pieces that will be placed and fixed in future

iterations.

4. Relaxed variables: contains z; s, , continuous variables that will not be fixed,

independently of the algorithm’s decision.
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Before running the heuristic, the width of horizon 2 and 3 must be decided. These
parameters are shown in the following, and can be visualized as the yellow and red double-

headed arrows in Figure [25] respectively:

Heuristic Parameters:
fix : width of the “variables to fix” horizon;

ins : width of the “insightful variables” horizon;

The most important parameter is fix, which must be larger than or equal to 1 and
smaller than the board width (1), since using the board width as fiz would simply result
in the monolithic model. Conversely, ins can have a value of 0, what would cause it to
be nonexistent in the heuristic, and must be smaller than or equal to W — fix. Logically,

both parameters must have a positive value since there are no negative ¢ coordinates.

The procedure of the heuristic starts with horizon 2 (variables to fix) placed at the
bottom of the board, where all variables that have a ¢ value from 0 to fix — 1 will be
fixed at the end of the iteration if their value is deemed as 1. If ins is larger than 0, then
above horizon 2 is horizon 3 (insightful variables), where all variables that have a g value
from fix to fix +ins — 1 will be binary during the iteration. Above either horizon 2 or
3, depending on whether ins is 0, is horizon 4, where all variables that have a ¢ value
from fix 4+ ins to W — 1 will be continuous during the iteration. This relaxed model
is then optimized, ending the iteration. After the first iteration, each horizon will move
up by fiz and horizon 1 will appear bellow horizon 2, containing the saved information
about previous iterations. The process of moving up the horizons will repeat itself until
the last iteration, where only horizon 1 and 2 will be present, since the last variables are
being fixed. At the end of the last iteration, the algorithm results in the solution for the
heuristic. The progression of the algorithm can be seen in Figure[26] in an example where
fix is one third of the board and ins is one sixth of the board. The images are in order

of first iteration on the left, to third and last iteration on the right:
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Figure 26: Progression of the Relax-and-Fix Heuristic
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Source: The Author

Without the use of normal patterns (see Section , this approach of dividing the
board into horizons has the same effect as directly dividing the variables uniformly based
on their g value, with each iteration having the same number of binary variables, excluding
the ones in the fixed horizon. The exception are the last iterations due to the proximity
to the board edge and the way variables are generated, which causes the last iterations to
have less binary variables in the second horizon than the others. However, with the use of
normal patterns, it is possible that different iterations will have different numbers of binary
variables in horizon 2, since the z; f 4, , variables might not exist for certain g values. The
design of the algorithm was intended to capture different variable generation methods
with the same logic, and, therefore, the choice of dividing the variables as described is

appropriate.

Furthermore, each iteration has a time limit to ensure that the heuristic is feasible for
use in a adequate amount of time. This time limit for each iteration is equal to 30 minutes
divided by the number of total iterations that will be run, what is consistent for the time
limit set in the monolithic model (see Section [5.1]). If the time runs out for an iteration,

the algorithm returns the information that no solution was found in the timeframe.

Finally, for the minimization problem, the lower bound (LowBo) used in the mono-
lithic model was removed in order to encourage the heuristic to place pieces below this
bound, since these problems only take the final width of the board (W) into consideration,
and setting a lower bound can make the heuristic indifferent to the placement of pieces

below this threshold.
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4.2 Fix-and-Optimize Heuristic

As mentioned in Section[2.2.2] a fix-and-optimize heuristic divides a MIP problem into
sub-problems by determining subsets of variables that, in an iteration of the heuristic, are

either fixed, or binary.

However, this definition allows several parameters to be different between fix-and-
optimize algorithms, and all the relevant ones are discussed here. First of all, similarly
to the last heuristic, the developed algorithm does not directly divide the variables into
subsets, but rather divides the board width (or initial board width in the minimization
case) into horizons. In a given iteration, the board can be divided into two horizons, what

can be seen in Figure 27}

Figure 27: One Iteration of the Fix-and-Optimize Heuristic

Source: The Author

Each horizon can be defined as follows:

1. Fixed variables: contains z; s ,,, variables that have been fixed in previous it-
erations independently of their assigned value. There is an exception for the first
iterations, since the board has not been completely swept and fixed by this heuristic
yet. For these iterations, this horizon contains z; ¢ 4, , variables that have been fixed
in the previous heuristic, which, in this thesis, is the relax-and-fix heuristic. This
means that, logically, the fix-and-optimize heuristic cannot work without an initial

solution.
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2. Variables to fix: contains binary z; s, , variables that will be fixed at the end of

the iteration independently of their assigned value.

Before running the heuristic, the width of horizon 2 must be decided. This parameter

is shown in the following, and can be visualized as the yellow arrow in Figure

Heuristic Parameter:

opt : width of the “variables to fix” horizon;

This parameter must be larger than or equal to 1 and smaller than the board width
(W), since using the board width as opt would simply result in the monolithic model.
Logically, this parameter must have a positive value since there are no negative ¢ coordi-

nates.

The procedure of the heuristic starts with horizon 2 (variables to fix) placed at the
bottom of the board, where all variables that have a g value from 0 to opt — 1 will be fixed
at the end of the iteration. Above horizon 2 is horizon 1, where all variables that have a ¢
value from opt to W — 1 will have fixed values obtained from the previous solution. This
relaxed model is then optimized, ending the iteration. After the first iteration, horizon
2 will move up by opt and horizon 1 will appear bellow horizon 2, containing the saved
information about previous iterations. The process of moving up the horizons will repeat
itself until an iteration where horizon 2 will touch the upper edge of the board, where
all variables that have a ¢ value from W — opt to W — 1 will be fixed at the end of
the iteration. At this point, if the termination criteria is not reached, the process will
restart with horizon 2 placed at the bottom of the board, until the termination criteria
is indeed reached. Interestingly, since all variables have a fixed value at the end of each
iteration, each iteration provides a complete solution to the problem. The progression of
the algorithm can be seen in Figure in an example where opt is one third of the board.
The images are in order of first iteration on the left, to third iteration on the right. At
the third iteration, the process would either end, if the termination criteria was reached,
or start over with the fourth iteration possessing a similar configuration as the first one,
but with fixed variable values from the three previous fix-and-optimize iterations, and not

from the relax-and-fix heuristic.
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Figure 28: Progression of the Fix-and-Optimize Heuristic
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Source: The Author

The developed termination criteria checks at every iteration in which horizon 2 touches
the upper edge of the board, such as the right-most image in Figure whether the
objective function has improved at any point during this so-called “board sweep”. If
so, the heuristic continues to run, and horizon 2 is again placed at the bottom of the
board. If there is not an improvement, then the heuristic stops and the last generated
solution is returned. Furthermore, the heuristic has a smart trigger for stopping in the
maximization problem if the values v; of the items are equivalent to their areas. In such
cases, the algorithm checks whether the value of the objective function for the solution of
every iteration reached the area of the board, since this implies that an optimal solution

was reached. If so, the algorithm stops and returns this solution.

Furthermore, each iteration has a time limit to ensure that the heuristic is feasible
for use in an adequate amount of time. This time limit for each iteration is equal to 30
minutes divided by the number of total iterations necessary for horizon 2 to sweep the
board, what is consistent for the time limit set in the monolithic model (see Section[5.1]). If
the time runs out for an iteration, the algorithm returns the information that no solution
was found in the timeframe. It is important to notice that it is theoretically possible
that the heuristic ends up running for an excessively long time if the termination criteria
is not reached in any sweep, what could happen with small increments in the objective
function at every turning point in the heuristic. However, although theoretically possible,
this issue is of no concern due to its unlikeliness. Furthermore, the lower bound (Low Bo)

was also removed for this heuristic.
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5 COMPUTATIONAL TESTS

In this chapter, the generation of the instances for the maximization and minimization
problem used for testing the models and heuristics will be detailed, and the results for
both will be presented and discussed. For the monolithic models, the results of the version
with normal patterns are compared to the ones with full sets (see Section . For the
heuristics, the results are designed to find the best heuristic parameters combination (see
Chapter . Furthermore, the results between the monolithic models and the heuristics

are also compared in order to validate the efficiency of the heuristics.

5.1 Generated Test Instances

The main test instances used a pseudo-random generation of parameters for the tetris-
like items, which were drawn from certain values that varied for each parameter and for
each item type. Each dimension of each tetris-like item type was sorted into one of two
categories, large dimension or small dimension, and this was done so that the item types
would retain the shapes of the original tetris-like pieces. Thus, small dimensions were
drawn from the numbers {4, 6, 8}, and large dimensions were drawn from the numbers
{10, 12, 14}. In Table (1| are the classifications of the dimensions by item type (i.e., “L”,
N I R EVAS E

Table 1: Dimensions Classification by Type of Piece
L J T S Z
lin | small | I;; | small | ;; | large | ;1 | large | ;1 | large
w; 1 | large | w;; | large | w;; | small | w;; | small | w;; | small
lio | large | l;o | large | ;o | small | [;o | large | [;o | large
w;o | small | w;o | small | w;o | small | w;o | small | w; o | small
Al; - Al; - Al; - Al; | small | Al; | small
Source: The Author

The sizes of the numbers from which the dimensions were drawn were selected in

order to create items with areas that did not occupy neither too much nor too little of



61

the are of the board. For the maximization problem, the dimensions of the board for all
the generated instances were set as L = 40 and W = 40, resulting in a square board. For
the minimization problems, the dimensions were set as L = 40 and W = 100, resulting in

a rectangular initial board.

Twelve instances were generated containing the following items: 1 item type “L”; 5
items type “L”; 1 item type “J7; 5 items type “J7; 1 item type “T”; 5 items type “T7; 1
item type “S”; 5 items type “S”; 1 item type “Z”; 5 items type “Z”; 1 item for each type
“L7, «Jr, w1, «S7, Y2475 5 items for each type “L7) <J7, “T7) “S”, “Z7 resulting in 25
items in total. These instances are represented in the results, respectively, as: 1L; 5Ls;
1J; 5Js; 1T; 5Ts; 1S; 5Ss; 17; 5Zs; 1Each; 5Each. The numbers of items in each instance
were purposefully chosen to compare the results for instances with more items than the
others. For each instance, the dimensions of each item were generated iteratively until all
items of the same type had different sizes. Table [2| presents the parameters of each item
of each generated instance, where the columns represent the instances and each block of

8 rows, marked by the colors white and grey, represent the parameters of an item:
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Table 2: Generated Instances
I L [50s | 1J [ 5Js [ 1T [ 5Ts | 1S [ 5Ss [ 1Z | 5Zs | 1Each 5Each
li 6 6 1 6 | 14 | 12 | 12 | 12 | 14 | 10 6 4] 4 12]12] 10
w,, | 14 | 10 | 10 | 12 | 8 1 6 1 6 B 10 14|14 8 | 4| 6
Lo | 10 | 14 | 10 | 12 | 6 1 10 | 12 | 12 | 10 14 1210 8 |12 | 12
wio | 8 6 6 1 6 6 8 6 8 1 6 6 | 6| 8|66
Al; - - - - - - 6 8 6 1 - - -8 s
b; 9 6 | 15| 5 10 12 | 10| 13 | 8 11 1 0|11 7 [10] 3
B; 0 3 |16 3 11 5 1| 3 9 3 3 T |11 1]1
Type | L L J J T T S S Z Z L L|J | TS|z
I 1 6 2 10 10 8 8 | 8 | 10| 12 | 10
i1 10 10 6 ] 8 14 10|10 4 | 4| 6
L2 10 12 8 14 12 12 10 | 14 | 6 | 10 | 14
;.o B 8 6 6 8 6 8 | 4| 8| 4 6
Al - N - 6 B - - -4 76
b; 5 8 2 7 1 2 4 4|1 10] 8
B; 3 3 3 3 2 2 T 1 1] 1]1
Type L J T S Z J L|J | TS|z
lix 6 8 14 14 12 12 S | 8 | 14| 14 | 14
Wi 12 10 6 1 6 8 0126 | 4] 8
Ti 2 12 12 6 12 12 8 212 6 | 12| 12
w;.2 4 6 8 ] 8 6 6 | 4 | 4| 4| 8
Al - - - 1 8 - -1 -6 4
b; 13 10 6 2 B 8 T [11]10] 1] 6
B; 3 3 3 1 2 3 1] 11 ]1]1
Type L J T S Z T LlJ TS|z
L 1 4 10 14 12 12 4 [ 6 |10 14] 10
w; 1 12 10 B 6 B 8 4|10 | 4 | 4 | 4
L2 10 14 6 10 10 14 12 |10 | 6 | 12 | 14
;.o B 8 8 8 4 8 4] 4|6 |8 4
Al - - - 6 4 4 - - 186
b; 2 7 4 2 4 1 0] 6 |11 ] 2 | 4
B; 3 3 3 2 3 2 T 11 ]1]1
Type L J T S Z S L J T S Z
li 6 6 12 10 14 14 6 | 4 | 12 ] 10 | 10
Wi 14 10 6 1 B 6 14|14 8 | 8 | 4
T2 14 14 B 12 14 10 14 | 14 | 4 |10 | 10
;.o 1 6 B 6 1 8 18| 4|86
Al; - - - 2 1 Z T - [ - [ 438
b; 1 11 11 8 1 9 S 25|67
B; 3 3 3 3 2 2 T |11 ]1]1
Type L J T S Z Z L|J | TS|z
Source: The Author

Besides the dimension for each item in each instance, this table also contains the
number of replicas of each item (see Section . For the maximization problem, this
value is represented by b; and was generated through two methods. For the instances with
only one item, this value was chosen through a deterministic formula so that the 40x40
board could be occupied as much as possible, while for the instances with more than one
item, this value was randomly generated iteratively using integers from 1 to 14, until the
sum of the areas of the items resulted in at least the board area. For the minimization
problem, this value is represented by B; and was generated through one method only.
The intention behind this method is generating a W that is close to 40, similar to the
maximization problem. The method work as follows: take the area of the intended final
board of 1600, divide by the number of items in the instance, divide this number by the

area of the item and round the number up to the closest integer.
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It is important to notice that the value of each item is missing from Table 2| for the
maximization problem. This is the case, because the value of each item was set as the
value of their areas, which is l; ; * w; 1 + l; 2 * w; 2. This way, the model and heuristics will
aim at maximizing the occupied area of the 40x40 board instead of an item value with no

meaning for our computational tests.

Another important topic to discuss are the results generated from the optimization
procedures and the heuristics. For the monolithic models of both problems the following

data was analyzed:

1. Objective: the value of the objective function at the end of the optimization
procedures. This is the most important result from the models since the objective
function is the object of optimization in all Operations Research problems. For the
maximization model, this value equals the sum of the values of the items that were

placed in the board, and for the minimization problem, the final width of the board.

2. Run Time: measured in seconds, it is either the amount of time it took the
algorithm to produce the optimal solution, or the time limit for the procedure (see
Section . This information gives an insight into the difficulty of running an
instance, since the more it takes to run it, the more difficult it is for the algorithm
to find the optimal solution. For the monolithic models there was a given run time
limit of thirty minutes for each instance which was used to make solving an instance

time-realistic, and to better compare the monolithic results with the heuristic ones.

3. Absolute GAP: the difference between the value of the objective function for the
solution and the theoretical calculated best possible value for the problem. This
data shows how close the algorithm was to finding the best possible solutions in
case the time limit was reached, and has the value of 0 if the optimal solution was

found.

4. Relative GAP: the absolute GAP divided by the the value of the objective function
for the solution. This data also indicates how close the algorithm was to finding the
best possible solutions in case the time limit was reached, however, it is measured
in relative terms, generalizing better for instances with very different parameters,

what is not the case in this thesis.

5. Iterations: the number of iterations that the solver took to find the solution. This
information also gives an insight into the difficulty of running an instance, since the

more take it takes to run it, the more work it took the solver to find the solution.
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6. Equations: the number of constraints equations generated by the instance. This
value is independent of the solution since it depends on the parameters of the in-
stance, but also gives an insight into the difficulty of running an instance, since the
more take it takes to run it, the more work it probably will take the solver to find

the solution.

7. Variables: the number of z; ¢ 4, , variables generated by the instance. This value is
independent of the solution, since it only depends on the parameters of the instance,
but also gives an insight into the difficulty of running an instance, since the more
take it takes to run it, the more work it probably will take the solver to find the

solution.

8. Images: the images of the boards with the placed items from the found solution.
Although some are presented in this section as examples, they can all be seen in
Appendix [A] for the maximization problem with normal patterns, and Appendix

for the minimization problem with normal patterns.

For the heuristics, the following data was analyzed:

1. Objective: the value of the objective function at the end of the heuristic proce-
dures. Similar to the monolithic models, this is the most important result from the

heuristic.

2. Run Time: measured in seconds, it is either the amount of time it took the algo-
rithm to produce the solution, or the time limit for the procedure (see Chapter [4)).
Similar to the monolithic models, this information gives an insight into the diffi-
culty of running an instance. The time limitation for the heuristics is explained in
Chapter [4

3. Feasibility: the feasibility of the instance at any point in the heuristic. This data
was analyzed since it is possible that the placement of the pieces in the boards can
done in such a way by the heuristics, that it becomes infeasible to comply with the
constraints at later iterations of the algorithm. It is possible that an instance is
infeasible even for the monolithic models, but their parameters were generated to

avold such an occasion.

4. Images: the images of the boards with the placed items from the found solution.

Some are presented in this section as examples.
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The results from the monolithic models that are not included here do not apply for
the heuristics, since the iterative nature of the heuristics take the meaning out of the
GAP function, and also out of the number of equations and number of variables, given

that each iteration will have a different ones.

5.2 Results for the Maximization Problem

In this section, the results from both the monolithic model and the heuristics for the
maximization problem are discussed. As described in Section the aim of this model is
maximizing the value of the placed pieces, and since the value of the items in the twelve

instances correspond to the item’s area, this problems aims at maximizing the occupation

of the board.

5.2.1 Monolithic Model

In Table [3] the results for the monolithic model of the maximization problem can be
seen. Two scenarios were compared: one where the full sets for grid discretization were
used, and another where the adapted normal patterns were used (see Section [3.3). The

values in bold indicate that the time limit was reached for an instance.
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Table 3: Results for the Monolithic Model Maximization Problem

1L 5Ls 1J 5Js 1T 5T's
Objective | 1312 1592 1600 1560 1184 1504
» | Run Time | 3,67 1005,76 | 1,92 1714,96 | 3,47 996,70
;5) Abs GAP | 0,00 0,00 0,00 0,00 0,00 0,00
= Rel GAP | 0,00% | 0,00% 0,00% | 0,00% 0,00% | 0,00%
a Iterations | 4352 1045184 | 1988 945998 | 1327 755933
Equations | 6582 29066 7158 29066 6582 29066
Variables | 7872 41312 8928 40944 8464 43680
Objective | 1312 1592 1600 1560 1184 1504
o Run Time | 0,31 19,27 0,16 48,22 0,15 37,43
Z | Abs GAP | 0,00 0,00 0,00 0,00 0,00 0,00
< | Rel GAP 0,00% | 0,00% 0,00% | 0,00% 0,00% | 0,00%
'§ Iterations | 424 34785 514 388708 | 354 112395
Equations | 2978 8906 3126 8906 2978 8906
Variables | 2096 10984 2368 10888 2248 11592

!; 1S 5Ss 1Z 5Zs 1AllShapes | 5AllShapes
Objective | 1216 1420 1080 1432 1460 1560

«» | Run Time | 2,77 1800,08 | 9,42 33,57 | 1013,66 1802,45

E Abs GAP | 0,00 24,00 0,00 0,00 0,00 40,00

—. | Rel GAP | 0,00% | 1,69% 0,00% | 0,00% | 0,00% 2,56%

E Iterations | 1875 2572216 | 5882 4446 1137073 197349
Equations | 6582 29066 6582 29066 | 26186 138606
Variables | 8152 41528 7608 40464 | 39456 209584
Objective | 1216 1420 1080 1432 1460 1592

A Run Time | 0,40 167,74 0,19 1,64 17,64 1800,33

Z | Abs GAP | 0,00 0,00 0,00 0,00 0,00 8,00

< | Rel GAP | 0,00% | 0,00% 0,00% | 0,00% | 0,00% 0,50%

E Iterations | 622 1039120 | 28 1446 142265 965233
Equations | 2978 8906 2978 8906 8166 37806
Variables | 2168 11040 2028 10764 | 10504 55696

Source: The Author

All the values of the objective functions have physical interpretations, such as items
placed on a board or cuts made on a large piece of cloth (see Section [2.1.3), and in order
to visualize the physical manifestations of the results, Figure [29|shows the resulting image

for one of the instances:
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Figure 29: Resulting Figure for the “1Each” Instance with Normal Patterns

Source: The Author

In order to analyze the influence of the normal patterns in the model, four indicators
are analyzed: run time, iterations, equations and variables. To analyze them, the ratio
between the results of each instance without and with normal patterns was calculated
and averaged. The resulting ratios are, respectively: 25.7, 23.7, 2.9, 3.8. These ratios
show that the normal patterns have a great influence in the maximization model, since
their use reduces greatly the run time and the iterations that the solver uses, and have
a smaller, but significant impact in the number of equations and variables. Furthermore,
we can see in Table 3] that for the instance “5Ss” the model with full sets was not able
to find the optimal solution, while the one with normal patterns was. Furthermore, for
the instance “5Each”, although neither version drove the GAP to 0, the one with normal

patterns found a better solution.

In order to analyze the influence of the number of items in the model, the same four
indicators are analyzed: run time, iterations, equations and variables. To analyze them,
the ratio between the results of each instance with five times more items and the one with
5 times less items was calculated and averaged only for the version with normal patterns.
The resulting ratios are, respectively: 193.1, 480.8, 3.2, 5.1. The ratios show that the
number of items has a great influence in the maximization model, even larger than the
normal patterns, in all indicators, since their use reduces greatly the run time and the
iterations that the solver uses, and has a smaller, but significant impact in the number of

equations and variables.

In conclusion, the developed model is able to contemplate the maximization cutting
and packing problem with tetris-like items, and the adapted normal patterns are useful

and provide great results.
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5.2.2 Relax-and-Fix Heuristic

For the maximization relax-and-fix heuristic, 9 combinations of the relax-and-fix
heuristic parameters were compared (see Section . The tested values of the fixz param-
eter where {4,5,8}, representing, respectively, one tenth, one eighth and one fifth of the
board width (W = 40), while the ones of the ins parameter where {0,4,5}. Furthermore,
all the instances used normal patterns. The results for the relax-and-fix heuristic of the
maximization problem can be seen in Table [4 and Table [5] The first presents the values
for the objective function and the second for the run time. The values in bold indicate
that the value corresponds to the best for the instance. Furthermore, “R” represents the

value of the fix parameter, and “F” of the ins parameter.

Table 4: Results for the Relax-and-Fix Maximization Problem - Objective

I R4F0 | R4F4 | R4,F5 [ R5F0 | R5,F4 | R5,F5 | R8,F0 [ R8,F4 | R8,F5
iL 1312 1312 1312 1312 1312 1312 1312 1312 1312
5Ls 1592 1592 1592 1592 1592 1592 1592 1592 1592
1J 1600 1600 1600 1600 1600 1600 1600 1600 1600
5Js 1548 1548 1548 1548 1548 1548 1548 1548 1548
1T 1184 1184 1184 1184 1184 1184 1184 1184 1184
5Ts 1416 1456 | 1448 1412 1456 | 1456 | 1416 1456 | 1448
18 1216 1216 1216 1216 1216 1216 1216 1216 1216
5Ss 1392 1392 1392 1392 1392 1392 1392 1392 1404
1Z 1080 1080 1080 1080 1080 1080 1080 1080 1080
5Zs 1416 1432 | 1432 | 1416 1432 | 1432 | 1432 | 1432 | 1432
1Each | 1436 1460 | 1460 | 1436 1396 1396 1460 | 1436 1436
5Each | 1568 1584 1564 1560 1564 1564 1584 1544 1592

Source: The Author

Table 5: Results for the Relax-and-Fix Maximization Problem - Run Time

R4,FO | R4,F4 | R4,F5 | R5,F0 | R5,F4 | R5,F5 | R8,FO | R8,F4 | R8,F5
1L 1,15 1,10 1,19 0,99 1,15 I,11 1,03 1,06 1,59
5Ls 20,71 26,57 | 30,67 11,24 | 21,19 | 21,83 17,49 | 8,20 93,29
1J 0,82 0,62 0,73 0,78 0,57 0,75 0,50 0,39 0,37
5Js 20,00 | 31,33 | 45,11 19,67 | 43,11 | 41,37 | 26,16 | 28,36 | 36,19
1T 0,74 0,72 0,80 0,80 0,64 0,66 0,52 0,60 0,46
5Ts 4450 | 44,83 | 43,63 | 54,58 | 38,67 | 39,91 42,12 36,74 | 63,59
1S 0,86 0,88 0,88 0,79 0,01 0,77 0,64 0,60 0,59
5Ss 32,65 | 37,68 | 37,71 20,26 | 39,14 | 39,97 | 29,04 | 137,65 | 148,86
1Z 0,95 0,66 0,87 0,55 0,76 1,05 0,47 0,42 0,44
5Zs 5,57 6,51 6,75 5,58 5,49 5,56 4,40 5,81 3,80
1Each | 11,30 14,08 17,02 10,59 | 16,96 16,93 11,13 16,26 15,42
5Bach | 32,59 | 110,96 | 250,34 | 92,74 193,45 | 211,26 | 92,05 80,43 | 322,11

Source: The Author

Regarding the feasibility of the heuristic, due to the nature of the maximization prob-
lem it is impossible for the heuristic to produce an infeasible result. This happens because
in the worst-case scenario, no pieces would be placed on the board, and the objective func-
tion would result in 0 without breaking any constraints of the model. That is different
for the minimization problem, since one of its constraints is stricter: the constraint of the

number of replicas. For the minimization problem, this constraint requires the placement
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of the exact number of pieces B;, while the maximization problem uses b; only as an upper
limit.

In order to better visualize the procedure of the heuristic, Figure presents the
graphical results at the end of each of the five iterations of the relax-and-fix heuristic for

the “1Each” instance with fiz = 8 and ins = 0 in sequence from the upper left image,

to the lower right one:

Figure 30: Resulting Figures for the “1Each” Instance with “R8,F0”

C
C

Source: The Author

Which combination of the fiz and ins parameters is best is a debatable topic, since
there is not a clear winner in neither the run time, nor the objective results. Based on
the objective value, the two most attractive options are “R4,F4” and “R8,F5”, since they
have the highest number of best values. Analyzing the run times, it is noticeable that the
run times for “R8,F5” are erratic, since the combination of parameters possesses several

worst and best values. Therefore, the chosen best combination of parameters is the more
stable one, “R4,F4”.

In order to evaluate the efficiency of the heuristic in comparison to the monolithic
model, two indicators are analyzed: objective and run time. To analyze both of these
results, the “R4,F4” relax-and-fix heuristic is compared to the monolithic model with
normal patterns, since they were also used here. To analyze the objective, the number
of instances where the heuristic produced either the same or better results than the

monolithic model is calculated, and to analyze the run time, the ratio between the results
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of each instance from the “R4,F4” heuristic and the monolithic model is calculated. The
resulting values are, respectively: 8 out of the 12 instances and 2.2 times. This means
that in only 4 instances the heuristic did not produce the best results, and that the
heuristic actually took more time than the monolithic model to run. The latter insight
calls for a more intricate analysis, since it is expected that an heuristic runs faster than
its monolithic model. Analyzing the data in more detail, it is possible to see that the
heuristic performs better for more complex instances with more items. For example, the
monolithic model could not prove an optimal result for the “5Each” instance in 1800
seconds, while the relax-and-fix heuristic reached a result in approximately 110 seconds,
more than ten times faster, and the result is only worse by a value of 8. This observation is
probably due to the fact that the simple instances of the maximization monolithic model
ran so fast, that the iterative nature of heuristic ended up making it take longer to run
these instances. Furthermore, the average run time of the instances for the monolithic
model with normal patterns is 174.5 seconds, while for the relax-and-fix heuristic with

normal patterns is 23.0 seconds, indicating that the heuristic is indeed faster.

As a conclusion, it is possible to state that the relax-and-fix heuristic for the maxi-
mization problem is effective, since it produces objective values similar to the monolithic
model, but, although fast, the heuristic is faster for more complex instances. This is fa-
vorable for this heuristic in a practical setting, since it makes more sense to use heuristics

for more complex problems that take too long for the monolithic model to run.

5.2.3 Fix-and-Optimize Heuristic

For the maximization fix-and-optimize heuristic, 3 different values for opt were com-
pared, using the worst combination of the relax-and-fix maximization parameters fix = 5
and ins = 0 (or “R5,F0”) (see Section [£.2)). The tested values of the opt parameter
where {4,5,8}, representing, respectively, one tenth, one eighth and one fifth of the board
width (W = 40). Furthermore, all the instances used normal patterns. The results for
the fix-and-optimize heuristic of the maximization problem can be seen in Table [6] which
presents the values for the objective function. Furthermore, “R” represents the value of

the fix parameter, “F” of the ins parameter, and “O” of the opt parameter.
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Table 6: Results for the Fix-and-Optimize Maximization Problem - Objective

R5,F0,04 | R5,F0,05 | R5,F0,08
1L 1312 1312 1312
5Ls 1592 1592 1592
1J 1600 1600 1600
5Js 1548 1548 1548
1T 1184 1184 1184
5Ts 1412 1412 1412
1S 1216 1216 1216
5Ss 1392 1392 1392
1Z 1080 1080 1080
5Zs 1416 1416 1416
1Each | 1436 1436 1436
5Each | 1560 1560 1560

Source: The Author

Determining which value of the opt parameter is best is not possible for this data set,

since every solution for every instance.

In order to evaluate the efficiency of this heuristic in comparison to the relax-and-fix
heuristic only the objective is analyzed. To analyze this result, any of the tested results
is compared to the “R5,F0” relax-and-fix heuristic, since they all have the same results.
To analyze the objective, the number of instances where this heuristic produced either
the same or better results than the relax-and-fix heuristic is calculated. The resulting
value is 0 out of the 12 instances. This result calls for a more intricate analysis, since it
is expected that the results of the relax-and-fix heuristics are improved by the fix-and-
optimize heuristic. Analyzing the data in more detail, it is possible to see that 6 out of the
12 instances already possessed the same objective value in “R5,F0” as the optimal solution
from the monolithic model, which means that the fix-and-optimize heuristic could only
possibly improve the results of the 6 remaining non-optimal solutions, half the number
of tested instances. Furthermore, these 6 remaining solutions were, on average, 2.2%
away from the solution obtained in the monolithic model, what gave the fix-and-optimize

heuristic a very thin margin for optimization.

Unfortunately, no solid conclusion regarding the effectiveness of the fix-and-optimize
heuristic for the maximization problem can be made due to the limitations of the dataset

used for testing.

5.3 Results for the Minimization Problem

In this section, the results from both the monolithic model and the heuristic for the
minimization problem are discussed. As described in Chapter [3, the aim of the model is

minimizing the value of the variable height W, compacting the pieces as much as possible.
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5.3.1 Monolithic Model

In Table [7] the results for the monolithic model of the minimization problem can be
seen. Two scenarios were compared, one where the full sets for grid discretization were
used, and another where the adapted normal patterns were used (see Section . The
values in bold indicate that the time limit was reached for these instances, and “NSEF”
indicates that no solutions that comply with the constraints were found in the given time

limit.

Table 7: Results for the Monolithic Model Minimization Problem
1L 5Ls 1J 5Js 1T 5T's
Objective | 46 66 40 58 50 55
, | Run Time | 127,87 | 1800,12 | 5,86 | 1800,19 | 101,06 | 1800,55
g Abs GAP | 0,00 -16,00 0,00 -2,00 0,00 -6,00
— | Rel GAP 0,00% | 24,24% 0,00% | 3,45% 0,00% | 10,91%
a Iterations | 51269 | 598572 8233 | 416446 34679 | 760679
Equations | 20767 | 79515 22087 | 79515 20767 | 79515
Variables | 22993 | 118833 25009 | 117985 24065 | 123121
Objective | 46 52 40 56 50 54
iy Run Time | 8,24 1800,15 | 1,35 235,33 8,14 1800,16
Z | Abs GAP | 0,00 -2,00 0,00 0,00 0,00 -4,00
< | Rel GAP | 0,00% | 3,85% 0,00% | 0,00% 0,00% | 7,41%
'é Iterations | 12594 | 6359406 | 3161 440889 9572 4201992
Equations | 8462 23697 8797 | 23697 8462 23697
Variables | 5997 30965 6509 | 30749 6269 32053
1S 5Ss 1Z 5Zs 1Each 5Each
Objective | 54 54 52 52 68 NSF
» | Run Time | 149,84 | 1800,60 | 124,13 | 1800,36 | 1800,31 | NSF
E Abs GAP | 0,00 -6,00 0,00 -2,00 -18,00 NSF
— | Rel GAP 0,00% | 11,11% 0,00% | 3,85% 26,47% NSF
ﬁ':' Iterations | 65742 | 464031 37166 | 557817 313137 NSF
Equations | 20767 | 79515 20767 | 79515 73971 NSF
Variables | 23513 | 119289 22489 | 117025 115057 NSF
Objective | 54 52 52 52 54 92
o, | Run Time | 12,23 | 1800,14 | 3,70 150,49 782,76 1800,30
Z | Abs GAP | 0,00 -3,00 0,00 0,00 0,00 -12,00
< | Rel GAP | 0,00% | 5,77% 0,00% | 0,00% 0,00% 13,04%
E Iterations | 14482 | 4519570 | 5368 353766 1670203 | 587831
Equations | 8462 23697 8462 23697 22290 98197
Variables | 6129 31081 5869 30505 30005 156197

Source: The Author

All the values of the objective function have physical interpretations, and in order to
visualize the physical manifestations of the results, Figure [31]| shows the resulting image

for one of the instances:
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Figure 31: Resulting Figure for the “1Each” Instance with Normal Patterns

Source: The Author

Similarly to the maximization problem, in order to analyze the influence of the normal
patterns in the minimization model, four indicators are analyzed: run time, iterations,
equations and variables. To analyze them, the ratio between the results of each instance
without and with normal patterns was calculated and averaged, with exception of the
instances with all the item types, since the version with full sets could not produce results.
The resulting ratios are, respectively: 9.4, 2.3, 2.9, 3.8. The ratios show that the normal
patterns have a significant influence in the minimization model, since their use greatly
reduces the run time and the iterations that the model needs, and has a smaller, but
significant impact in the number of equations and variables. However, when compared
to the maximization model (see section the influence of the normal patterns is not
as impactful. Furthermore, we can see in Table [7] that in multiple instances the model
with full sets either was not able to find the optimal solution while the one with normal
patterns was, or the one with normal patterns found a better solution, although neither
version drove the GAP to 0. Furthermore, the impact of normal patterns was so great
in the “5Each” instance, that with them, the model was able to find a feasible solution,

what it was not able to do without them.

In order to analyze the influence of the number of items in the model, the same four
indicators are analyzed: run time, iterations, equations and variables. To analyze them,
the ratio between the results of each instance with five times more items and the one with

5 times less items was calculated and averaged only for the version with normal patterns.
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The resulting ratios are, respectively: 134.0, 243.6, 3.1, 5.1. The ratios show that the
number of items has a great influence in the minimization model, even larger than the
normal patterns, in all indicators, since their use reduces greatly the run time and the
iterations that the model needs, and has a smaller, but significant impact in the number
of equations and variables. Compared to the maximization problem, the influence of the

number of items is smaller but still very impactful.

In conclusion, the developed model is able to contemplate the minimization cutting
and packing problem with tetris-like items, and the adapted normal patterns are useful

and provide great results.

5.3.2 Relax-and-Fix Heuristic

For the minimization relax-and-fix heuristic, 9 combinations of the relax-and-fix heuris-
tic parameters were compared (see Section . The tested values of the fiz parameter
where {10,15,20}, representing, respectively, one tenth, approximately one seventh and
one fifth of the initial board width (W = 100), while the ones of the ins parameter where
{0,10,15}. Furthermore, all the instances used normal patterns. The results for the relax-
and-fix heuristic of the minimization problem can be seen in Table [§] and Table [9] The
first presents the values for the objective function and the second for the run time. The
values in bold indicate that the value corresponds to the best for the instance, and “NSF”
indicates that no solutions that comply with the constraints were found in the given time
limit in a given iteration. Furthermore, “R” represents the value of the fiz parameter,

and “F” of the ins parameter.

Table 8: Results for the Relax-and-Fix Minimization Problem - Objective

R10,FO | R10,F10 | R10,F15 | R15,FO | R15,F10 | R15,F15 | R20,FO | R20,F10 | R20,F15
1L 60 60 54 54 54 54 54 50 48
5Ls 62 62 60 60 56 60 56 58 54
1J 52 52 52 52 48 52 46 50 40
5Js 66 66 70 64 64 62 60 60 60
1T 56 56 64 52 62 52 52 52 58
5Ts 62 62 60 62 58 62 56 58 58
1S 56 56 62 54 62 54 56 56 54
5Ss 60 60 58 56 56 56 56 54 56
17 54 54 62 54 62 54 54 54 58
5Zs 60 60 66 58 58 58 54 54 58
1Each | 60 60 68 60 62 60 58 58 58
5Each | NSF NSF NSF NSF NSF NSF NSF NSF NSF

Source: The Author



75

Table 9: Results for the Relax-and-Fix Minimization Problem - Run Time

R10,F0 | R10,F10 | R10,F15 | R15,F0 | R15,F10 | R15,F15 | R20,F0 | R20,F10 | R20,F15
1L 48,74 49,14 38,51 49,91 33,59 43,19 38,25 35,85 26,33
5Ls 430,33 345,01 351,03 857,47 677,02 732,86 725,55 626,61 455,84
17 71,61 67,46 54,14 52,63 41,59 48,25 59,97 32,33 27,26
5Js 331,84 294,27 406,69 706,58 589,72 478,49 914,74 654,40 730,36
1T 43,41 40,30 29,73 30,98 26,37 26,32 24,36 26,23 23,36
5Ts 575,95 549,23 616,71 793,43 674,58 687,61 784,71 604,10 526,03
1S 37,92 30,98 36,73 32,01 24,74 27,83 27,61 19,40 22,11
5Ss 790,30 767,03 301,08 523,02 582,26 463,41 480,05 435,68 454,09
1Z 43,79 40,21 41,57 38,54 30,86 35,40 30,32 35,71 22,62
5Zs 449,03 492,26 555,77 442,14 323,43 442,85 259,19 | 373,51 367,58
1Each | 438,81 394,75 554,56 510,29 633,49 601,45 482,70 627,74 514,10
5Each | NSF NSF NSF NSF NSF NSF NSF NSF NSF

Source: The Author

Regarding the feasibility of the heuristic, although it is possible due to the strict
nature of the minimization problem that the relax-and-fix heuristic will run, at some

point, into an infeasible solution, this did not occur with the generated instances.

In order to better visualize the procedure of the heuristic, Figure presents the
graphical results at the end of each of the five iterations of the relax-and-fix heuristic for

the “1Each” instance with fix = 20 and ins = 15 in sequence:
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Figure 32: Resulting Figures for the “1Each” Instance with “R20,F15”

Source: The Author

Unlike the maximization problem, the best combination of the fix and ins parameters
is fairly clear. Based on the objective value, the most attractive options are the ones with
“R207, the largest fiz value, since they have the highest number of best values. Analyzing
the run times, the combination of parameters with the highest number of best values is

“R20,F15”. Therefore, the chosen best combination of parameters is “R20,F15”.

Similarly to the maximization problem, in order to evaluate the efficiency of the
heuristic in comparison to the monolithic model, two indicators are analyzed: objective
and run time. To analyze both of these results, the same calculations as the ones in
the maximization problem are used, however, for the run time ratio, the data from the

“5Each” instance was excluded, since the heuristic could not find any solutions in time.
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The resulting values are, respectively: 2 out of the 12 instances and 2.2 times. This means
that in only 2 instances the heuristic produced the best results and that the heuristic
actually took more time than the monolithic model to run. The first insight stands out
since the results are significantly different than the ones for the maximization problem,
which were much better. One reason might be able to explain this: a possible shortcoming
of the heuristic. The minimization problem is marked by a constant conflict between two
objectives: minimizing the board width W, and placing the item replicas, and it is
possible that, if the item placement was somehow more incentivized, the first iterations
would be smarter and would place more items instead of focusing on minimizing the board
width, what might help future iterations by diminishing the number of pieces that must

still be placed in later iterations.

The run time ratio of 2.2 also calls for a more intricate analysis, and, similarly to
the maximization problem, it is possible to see that the heuristic performs better for
more complex instances with more items. For example, the monolithic model could not
prove an optimal result for the “5Ts” instance in 1800 seconds, while the relax-and-fix
heuristic reached a result in approximately 523.0 seconds, more than three times faster,
and the result is only worse by a value of 4. Furthermore, the instances “5Ls” and “5Ss”
present a similar story. The same explanation of the extremely fast run times for the
simple instances and the iterative nature of the heuristic also work for the minimization
problem. Furthermore, the average run time of the instances for the monolithic model
with normal patterns is 600.1 seconds, while for the relax-and-fix heuristic with normal

pattern it is 288.2 seconds, indicating that the heuristic is indeed faster.

As a conclusion, it is possible to state that the relax-and-fix heuristic for the mini-
mization problem is not so effective at reaching close-to-optimal solutions, and, although
fast, the heuristic is faster for more complex instances. The heuristic is useful, though,

for generating initial solutions to be refined in later heuristics.

5.3.3 Fix-and-Optimize Heuristic

For the minimization fix-and-optimize heuristic, 3 different values for opt were com-
pared using the worst combination of the relax-and-fix minimization parameters, fiz = 10
and ins = 15 (or “R10,F15”) (see Section [1.2). The tested values of the opt parameter
where {10,15,20}, representing, respectively, one tenth, approximately one seventh and
one fifth of the initial board width (/W = 100). Furthermore, all the instances used normal

patterns. The results for the relax-and-fix heuristic of the minimization problem can be
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seen in Table which presents the values for the objective function and has the best

value for an instance in bold:

Table 10: Results for the Fix-and-Optimize Minimization Problem - Objective

R10,F15,010 | R10,F15,015 | R10,F15,020
1L 54 52 54
5Ls 60 60 60
1J 52 52 52
5Js 70 70 70
1T 64 64 62
5Ts 60 60 60
1S 62 62 62
5Ss 58 58 58
1Z 62 62 62
5Zs 66 66 66
1Each | 66 68 64
5Each | NSF NSF NSF

Source: The Author

Regarding the feasibility of the heuristic, due to the nature of the fix-and-optimize
heuristic and the fact that the initial solutions were feasible except for the “5SEach” in-
stance, it is impossible for the heuristic to produce an infeasible result. This is because,
in the worst-case scenario of an iteration, the fixed values of the variables would simply

remain the same, what cannot make the problem infeasible.

Unlike the maximization problem, the best value of the opt parameter is fairly clear.
Based on the objective value, the most attractive option if opt = 20, since it was the only

one to produce two improved results.

Similarly to the maximization problem, in order to evaluate the efficiency of the
heuristic in comparison to the relax-and-fix heuristic, only the objective is analyzed.
To analyze this result, the “O20” heuristic is compared to the “R10,F15” relax-and-fix
heuristic. The same calculation as the one in the maximization problem is used. The
resulting value is 2 out of the 11 instances, since the “5Each” instance had an infeasible
solution and could not possibly be improved. This result calls for a more intricate analysis,
since the result from the maximization problem was of low quality and this could have
happened here too. Analyzing the data in more detail, it is possible to see that the fix-and-
optimize heuristic could improve the results of all 11 feasible initial solutions, since none
of them were optimal. Furthermore, these 11 solutions were, on average, 14.4% away from
the solution obtained in the monolithic model, what gave the fix-and-optimize heuristic a
good margin for optimization. This means that the data used in the minimization version

was of good quality, contrary to the one in the maximization version.

The resulting value of 2 improvements out of the 11 possible ones indicates a low
effectiveness of the heuristic, and also Figure |33| shows a phenomenon that was already

expected: the fix-and-optimize heuristic only seems to be slightly effective at the top
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the board, where the variable width W can actually be optimized. In this figure, the
image on the left shows the result obtained with the “R10,F15” relax-and-fix heuristic,
while the image on the right shows the improved result obtained with the “R10,F15,020”

fix-and-optimize heuristic for the “1Each” instance:

Figure 33: Fix-and-Optimize Improvement for the “1Each” Instance

Source: The Author

As a conclusion, it is possible to state that the fix-and-optimize heuristic for the
minimization problem is not effective, although it has caused more impact in the results

than the heuristic for the maximization problem.
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6 FUTURE PROSPECTS

In this chapter, the summary of the results of the monolithic models and the heuristics
is discussed, as well as the limitations of the performed research, and possible future

improvements to be made.

Regarding the monolithic models, it is possible to state that this graduation thesis
was capable of describing two novelty cutting and packing models for extensions/variants
of the 2D-I-ITPP /SLOPP /SKP and 2D-I-ODP problems. Furthermore, the effectiveness
of the adapted normal patterns was tested and substantiated by the results for both kinds
of assignments. This means that this thesis was able to provide a significant literature
that expands across many real-world applications, considering the higher-level cutting
and packing problems which the models concern, and that has direct applications in the
design of phased array antennas, metal stamping, design of printed circuits boards, timber
cutting and layout of newspaper pages, given that the polyomino literature is tied to these

industries.

There are two identified possible limitations of the monolithic models for both prob-
lems: the mathematical modeling of the tetris-like items and the method for grid dis-
cretization. The first limitation derives from the fact that the developed mathematical
models for these items create one constraint for each item type, for each orientation, and
for each possible (p, ¢) combination, what causes a heavy burden on the model by greatly
increasing the number of equations in it. To improve upon this, it is possible that the
positional relation between the two rectangles in each item can be written differently with
less constraints, or that the same problem can be modelled with a different logic, possibly
non-linearly. In order to determine the difference in efficiency of this new mathematical
description of the problems studied in this thesis, in a future research a battery of com-
putational tests would have to be performed and the results would have to be compared

with the ones obtained in this thesis.

Moreover, the developed adaptation of the normal patterns results in the generation

of relatively many discretizations on the board, compared to the traditional method. Part
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of the reason for this, is that, due to the irregular and concave nature of the tetris-like
items, the proof that the normal patterns generation does not loose relevant solutions is
not valid in this case, and the adaptations were made to contemplate the nuances from
these irregular pieces. This means that, although the adapted normal patterns did not
seem to negatively affect the results, only improve them, there is no formal proof that
no information is being lost with their use. Future research could aim at improving the
grid discretization algorithm itself to reduce the number of discretizations, and could also
prove the adequacy of the adapted normal patterns for the problems contemplated in this

thesis.

Regarding the maximization and minimization relax-and-fix heuristics, it is possible
to state that this graduation thesis was capable of developing an effective and efficient
relax-and-fix heuristic that works on both kinds of assignment, although better in the
maximization one. Furthermore, the optimal combinations of relax-and-fix parameters
were reached for the generated instances, and could arguably be generalized by taking the
proportion of the board to which the parameter is related, to be used in other instances
or in future researches. This, however, is not certain to result in the best combination of
parameters for new instances, since the determination of the best combination of param-
eters depends on many factors, which were not analyzed in this thesis, including: sizes
of the tetris-like items, using values v; that are not equal to an item’s area and using

rectangular items in the instances.

The main identified limitation of the developed relax-and-fix-heuristic is that the set
of parameters combinations (9 for each kind of assignment) might not be comprehensive
enough, and more data points could have been gathered to further consolidate the obtained
results. This was not performed in this thesis due to deadline limitations, and the 9
studied pairs of parameters contemplated significantly different proportions of the board,
generating solid results. This means that, although not so significant, future research

could expand upon the developed test dataset with more instances and combination.

Regarding the maximization and minimization fix-and-optimize heuristics, it is possi-
ble to state that the developed algorithm was not effective at improving the relax-and-fix
solution, although this statement can be challenged in future researches by increasing
the number of tests in the maximization problem. These results show that the fix-and-
optimize heuristics are the subjects of this thesis with the most impactful limitations.
The first and most crucial limitation comes from the tests performed in the maximization
version of the problem. The initial solutions given to this heuristic for the minimization

problems were sub-optimal and numerous enough, that concluding that the developed
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heuristic is not effective in this case is logical and solid. However, this is not the case for
the maximization problem, where the initial solutions given to the heuristic where close
to optimal, with 6 of them already being optimal solutions. This decreased the quality
of the test data significantly and made it difficult to conclude whether the maximization
fix-and-optimize heuristic is effective in itself, since the given initial solutions were had
such a small margin for improvement. This reformulation of the testing data could not be
performed in this thesis due to deadlines, but it is encouraged that future researches test
far from optimal initial solutions for the fix-and-optimize heuristic. These solutions could
be generated by hand or with a new, weaker heuristic. With this methodology it would be
possible to distinguish whether the fix-and-optimize heuristic in indeed inefficient for this
cutting and packing problem, or it can be useful in situations where the initial solution

is far from optimal.

Furthermore, a new heuristic tailored to the minimization problem could be devel-
oped, since the relax-and-fix heuristic was only effective at generating sub-optimal initial
solutions for this assignment, and the fix-and-optimize heuristic was practically ineffec-
tive. Two ideas for this new heuristic are: incentivizing the placement of the pieces using
a modification of the objective function, and minimizing a local variable height at each

¢

iteration that concerns the “variables to fix” horizon, instead of minimizing the “global”
W variable height. For the second idea to work it would be necessary to also lower the
y-axis positions of the pieces fixed above the “variables to fix” horizon if the local variable

height was minimized.

In conclusion, this thesis provided valuable models, heuristics and insights for the
cutting and packing problems literature, while also developing a basis for future researches

and improvements upon this graduation thesis.
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