
ARTUR GIL DE VASCONCELLOS

TWO-DIMENSIONAL CUTTING AND PACKING
PROBLEMS WITH TETRIS-LIKE ITEMS

São Paulo
2022

ARTUR GIL DE VASCONCELLOS

TWO-DIMENSIONAL CUTTING AND PACKING
PROBLEMS WITH TETRIS-LIKE ITEMS

Graduation Thesis presented to the Poly-

technic School of the University of São

Paulo to obtain the Degree of Production

Engineering.

São Paulo
2022

ARTUR GIL DE VASCONCELLOS

TWO-DIMENSIONAL CUTTING AND PACKING
PROBLEMS WITH TETRIS-LIKE ITEMS

Graduation Thesis presented to the Poly-

technic School of the University of São

Paulo to obtain the Degree of Production

Engineering.

Advisor:

Leonardo Junqueira

São Paulo
2022

To my grandparents, who could
not witness my graduation and will
always be remembered with love

ACKNOWLEDGMENTS

I would like to thank the São Paulo Research Foundation (FAPESP, grant 2018/11877-
4) for assisting the research that was used as the basis of this thesis with a generous
scholarship.

I thank my supervisor Professor Leonardo Junqueira, who has supported me since
years before this thesis, even with matters unrelated to this research, and with whom I
could always speak openly no matter the circumstances.

I thank all the Professors and assistants that have shown me again and again the joy
in the quest for knowledge, and that were essential for my graduation.

I thank my family, that has supported me in every imaginable way in my pursuit for
my dreams, and that has made possible everything that I have ever achieved.

I thank all the friends that I’ve made during this journey for being by my side in the
best and worst moments of my life, and for teaching me things about myself that I could
never have known otherwise, making me a better person.

From the bottom of my heart, thank you.

“Knowledge is power. Information is
liberating. Education is the premise of
progress, in every society, in every fam-
ily.”

-- Kofi Annan

ABSTRACT

Cutting and packing problems is an area in Operations Research that has been stud-
ied extensively over the years. These problems have many real-world applications and,
therefore, can have many different defining characteristics. One such characteristic is the
shape of the items involved in a cutting and packing problem, with both regular items
(e.g., rectangles and circles) and irregular items (e.g., concave polygons) being contem-
plated in the literature. This graduation thesis concerns the cutting/packing of tetris-like
items, popularized from the famous game “Tetris”. These items are modelled through
two rectangles with flexible dimensions connected by their edges, and they are packed in
a large rectangular board with either two fixed dimensions, or one fixed and the other
variable. Furthermore, two different kinds of assignments were contemplated: maximiz-
ing output value and minimizing input value, with one mixed integer programming model
being developed for each of the two. As far as the performed research indicates, the de-
veloped models are a novelty in the cutting and packing problems literature. In order to
provide a firm basis for the understanding of this thesis and to present the cutting-edge
researches in cutting and packing problems, a literature review is performed that analyzes
different variants of cutting and packing problems. After that, the developed models for
the maximization and minimization versions of the problem are presented and explained
in detail, and an adaptation of the normal patterns variable generation is presented and
explained as well. The maximization version concerns a situation where the goal is to
optimize the placement of the tetris-like pieces in the board, so that the sum of the values
of the placed items is maximized. The minimization version concerns a situation where
there is a given number of pieces to be placed and the goal is to minimize one of the
dimensions of the board while satisfying this constraint. One problem with mixed integer
programming models is that they tend to be slow for these types of problems, which are
generally NP-complete, and, therefore, two heuristics with a similar logic are also devel-
oped and presented: one relax-and-fix and one fix-and-optimize heuristic. The models
and the heuristics were then implemented and tested using Python and Gurobi to reach
solutions for each of the generated pseudo-random instances. The results show that the
models are effective and feasible for representing tetris-like items and that the adapted
normal patterns have a significant positive impact in the solver’s performance. Further-
more, the developed relax-and-fix heuristic is effective and efficient for the maximization
problem, and is able to provide sub-optimal initial solutions for the minimization prob-
lem.

Keywords – Operations Research, Cutting and Packing Problems, Tetris-like Items,
Rectangular Items.

LIST OF FIGURES

1 Solution to an Example Involving Tetris-like Items 16

2 Structure for the Literature Review . 19

3 Categorization of Cutting and Packing Problems according to the Five

Criteria . 23

4 Nomenclature of Intermediate Cutting and Packing Problems 24

5 Example of Beasley’s Model . 25

6 An Example of a Nesting Problem . 27

7 The 0-1 Raster Representation for Irregular Pieces 27

8 The D-Function and Inner Circles Direct Trigonometry Modelling Strategies 28

9 Solution for the Model proposed by Kashkoush, Shalaby & Abdelhafiez

(2012) . 29

10 Solution for the Model proposed by Karademir, Prokopyev & Mailloux (2016) 30

11 Solution for the Model proposed by Kita & Miyata (2021) 30

12 Seven Types of Tetrominoes . 31

13 Example of a Tetris-like Item placed in a Convex Space 32

14 Illustration of the Relax-and-Fix Heuristic 33

15 Example of a Fix-and-Optimize Heuristic 36

16 Mathematical Representation of L-shaped Items 38

17 Mathematical Representation of J-shaped Items 39

18 Mathematical Representation of T-shaped Items 40

19 Mathematical Representation of S-shaped Items 41

20 Mathematical Representation of Z-shaped Items 42

21 Example of a 5x5 Board with a 2x1 Rectangle 45

22 Possible Solutions for the Normal Patterns Example 49

23 Necessary Dimensions for Normal Patterns Generation 50

24 Example of a Position where Two Tetris-like Pieces “Fit” 51

25 One Iteration of the Relax-and-Fix Heuristic 54

26 Progression of the Relax-and-Fix Heuristic 56

27 One Iteration of the Fix-and-Optimize Heuristic 57

28 Progression of the Fix-and-Optimize Heuristic 59

29 Resulting Figure for the “1Each” Instance with Normal Patterns 67

30 Resulting Figures for the “1Each” Instance with “R8,F0” 69

31 Resulting Figure for the “1Each” Instance with Normal Patterns 73

32 Resulting Figures for the “1Each” Instance with “R20,F15” 76

33 Fix-and-Optimize Improvement for the “1Each” Instance 79

LIST OF TABLES

1 Dimensions Classification by Type of Piece 60

2 Generated Instances . 62

3 Results for the Monolithic Model Maximization Problem 66

4 Results for the Relax-and-Fix Maximization Problem - Objective 68

5 Results for the Relax-and-Fix Maximization Problem - Run Time 68

6 Results for the Fix-and-Optimize Maximization Problem - Objective 71

7 Results for the Monolithic Model Minimization Problem 72

8 Results for the Relax-and-Fix Minimization Problem - Objective 74

9 Results for the Relax-and-Fix Minimization Problem - Run Time 75

10 Results for the Fix-and-Optimize Minimization Problem - Objective 78

CONTENTS

1 Introduction 15

1.1 Objectives and Contributions of this Thesis 16

1.2 Structure of this Thesis . 17

2 Literature Review 19

2.1 Operations Research and the Class of Cutting and Packing Problems . . . 20

2.1.1 Cutting and Packing of Regular Items 25

2.1.2 Cutting and Packing of Irregular Items 26

2.1.3 Polyominoes and Tetrominoes . 28

2.2 MIP Heuristics . 32

2.2.1 Relax-and-Fix . 33

2.2.2 Fix-and-Optimize . 35

3 Mathematical Modeling 37

3.1 Mathematical Representation of Tetrominoes 37

3.2 Developed Models . 42

3.3 Grid Discretization . 48

4 Solution Approach 53

4.1 Relax-and-Fix Heuristic . 53

4.2 Fix-and-Optimize Heuristic . 57

5 Computational Tests 60

5.1 Generated Test Instances . 60

5.2 Results for the Maximization Problem . 65

5.2.1 Monolithic Model . 65

5.2.2 Relax-and-Fix Heuristic . 68

5.2.3 Fix-and-Optimize Heuristic . 70

5.3 Results for the Minimization Problem . 71

5.3.1 Monolithic Model . 72

5.3.2 Relax-and-Fix Heuristic . 74

5.3.3 Fix-and-Optimize Heuristic . 77

6 Future Prospects 80

References 83

Appendix A – Images Generated by the Maximization Monolithic Model

with Normal Patterns 90

Appendix B – Images Generated by the Minimization Monolithic Model

with Normal Patterns 97

15

1 INTRODUCTION

Cutting and packing problems can be broadly divided into cutting problems, which

consist of cutting larger units into smaller units, and packing problems, which consist

of packing smaller units into larger units. The larger units are typically called objects,

and the smaller units are typically called items. Both problems aim at optimizing certain

goals (WÄSCHER; HAUSSNER; SCHUMANN, 2007). Examples of cutting problems

applications appear in cutting steel bars, paper reels, cardboard boxes, metal or wood

sheets, fabric rolls, glass plates, etc. Examples of packing problems applications appear

in loading boxes onto pallets or into containers and trucks.

Although in practice they are two very distinct problems, from a mathematical point of

view it does not matter whether the pattern obtained for a given set of units is interpreted

as being a cutting pattern or a packing pattern, which implies the existence of a “duality”

between cutting problems and packing problems, that is, the duality between cutting

material/packing space and cutting space/packing material. Since the early 1990s, in

addition to these two classes of problems, other related or integrated problems with similar

logical structure have been treated as cutting and packing problems (JUNQUEIRA, 2009).

The object of study of this thesis consists of a variant of two-dimensional cutting and

packing problems involving tetris-like items, for example, with “L”, “J”, “T”, “S” and “Z”

shapes, among other. In these problems, items of these types must be arranged without

overlapping and inside a rectangular board, and the objective may consist of maximizing

the occupied area of the board (i.e., where not necessarily all available items are used) or

minimizing one of the dimensions of the board (i.e., where necessarily all available items

are used).

The following Figure 1 illustrates a solution (cutting/packing pattern) for an example

involving tetris-like items. In this figure, the hatched areas represent unoccupied parts

of the board. It is important to state that the items addressed in this thesis are not

restricted to tetrominoes, which consist of four identical squares connected by their edges,

as originally considered in the game Tetris (TETRIS, 2022), but to more general items

16

that have the shapes of tetrominoes, but not necessarily their proportions.

Figure 1: Solution to an Example Involving Tetris-like Items

Source: The Author

According to the typology of Wäscher, Haußner & Schumann (2007), these problems

could be classified as 2D-R-IIPP/SLOPP/SKP, based on the first objective, and as 2D-

R-ODP, based on the second objective, and assuming that there is a certain regularity in

the form of the items. If it is understood that this regularity does not exist, then these

problems could be classified as 2D-I-IIPP/SLOPP/SKP and as 2D-I-ODP, respectively

(BENNELL; OLIVEIRA, 2008). In other words, the consideration of tetris-like items

makes the problems addressed in this thesis not fit perfectly into the typology proposed

by Wäscher, Haußner & Schumann (2007), so they would be better classified as a variant

of two-dimensional cutting and packing problems.

Two-dimensional cutting and packing problems with tetris-like items can occur in

many specific sub-sectors of the industry (e.g., textiles, apparel, footwear, metalworking,

coatings, etc.) where the items to be cut or packed have shapes that can be approximated

by shapes like those in Figure 1. Some real-world applications might include cutting

fabrics and leather, stamping metal sheets, cutting ceramic coatings, designing printed

circuit boards, and layout of magazines, newspapers, and web pages.

As a variant of two-dimensional cutting and packing problems, the problems con-

sidered in this thesis are combinatorial optimization problems that are difficult to solve

exactly (LODI; MARTELLO; MONACI, 2002; SILVA; OLIVEIRA; WÄSCHER, 2014),

and, to the best of our knowledge, there are no works in the literature that have treated

these problems and proposed mixed integer linear programming models to describe them.

1.1 Objectives and Contributions of this Thesis

The objectives of this graduation thesis are the following:

17

I To study the broad class of Cutting and Packing Problems, focusing on a specific

combination of sub-problems and variants;

II To build two mathematical models with different objective functions capable of con-

templating the cutting/packing of tetris-like items in a large rectangular board;

III To implement the models in a computational language in order to solve the prob-

lem and analyze the performance of the models for different instances with different

characteristics;

IV To implement heuristics based on mathematical programming models in order to

solve the problem and analyze the performance of the heuristics compared to the

monolithic models.

As for the main contributions of this thesis, they are the following:

I Building two novel and original models for the cutting/packing of tetris-like items

modeled by a pair of connected rectangles, to be placed on a large rectangular board

with either both dimensions fixed or one variable dimension;

II Providing faster heuristic alternatives to the monolithic models capable of reaching

solutions with similar qualities.

1.2 Structure of this Thesis

• Chapter 1 - Introduction: Presentation of the thesis’ theme, its motivations,

objectives, contributions and structure;

• Chapter 2 - Literature Review: Review of studies which served as the basis for

the mathematical model, covering concepts such as regular and irregular items in

cutting and packing problems, tetrominoes and mixed integer programming-based

heuristics;

• Chapter 3 - Mathematical Modeling: Explanation of how the tetris-like items

were modelled, presenting the used notation and the models themselves, along with

explanatory comments to the models;

• Chapter 4 - Solution Approach: Explanation of how the heuristics for the

developed models were designed, along with explanatory comments to the heuristics;

18

• Chapter 5 - Computational Test: Tests to evaluate the models and heuristics

performance in the generated instances, with results and discussions;

• Chapter 6 - Future Prospects: Closure of the thesis, with a summary of the

work, its limitations and future research, and final considerations.

19

2 LITERATURE REVIEW

In this chapter, the most relevant academic subjects explored in this thesis are intro-

duced to provide the knowledge-basis necessary for understanding the conducted research,

and to exhibit the state-of-the-art research on these subjects. First, the topics of Oper-

ations Research and, more specifically, cutting and packing problems are introduced,

followed by two subsets of these problems, one with regular items and the other with

irregular items. Then, the subject of tetrominoes and their study in cutting and packing

problems is discussed, and, finally, some heuristic methods based on mathematical pro-

gramming that can be used to generate solutions in cutting and packing problems are

analyzed. Figure 2 shows the structure of this chapter and its topics:

Figure 2: Structure for the Literature Review

Source: The Author

20

2.1 Operations Research and the Class of Cutting

and Packing Problems

According to Murthy (2007), Operations Research is a field of mathematics that is

useful as a scientific base for management to optimize decisions to their problems. This

area of study was developed during the Second World War as time-setting problem for

dropping bombs from airplanes onto submarines. The area of focus went on to expand

into resource optimization for the military, and, since then, Operations Research has

expanded to address many other subjects, such as the industry, economic growth planning,

agriculture and traffic control.

This research utilizes mathematical models to describe systems, which are defined as

an organization of interdependent components that work together to accomplish a goal

(WINSTON, 1997). These models possess three main parts, the objective function, the

decision variables, and the constrains. The goal of an Operations Research model is

to either maximize or minimize the objective function, which is affected by the decision

variables. The values of these variables can be determined by the user of the model, whose

main task is choosing these values so that the objective function is either maximized or

minimized. The decision variables are described by the model’s constrains, which restrict

the values of the variables.

Furthermore, the optimization methods for these problems can be classified according

to different characteristic of the problem and the model (DUTTA, 2016). One of the

possible classifications is based on the structure of the equations and subdivides models

into ones that require linear programming (LP) and ones that require non-linear pro-

gramming (NLP). Simply put, a model in which all the equations are linear, including

both the objective function and constrains, requires linear programming. Another possi-

ble classification is based on the nature of the decision variables and subdivides models

into ones that require continuous optimization and ones that require discrete optimiza-

tion. If the variables are contained in the real numbers domain and the objective function

and constrains are continuous, then the model requires continuous optimization, but if

the variables can only possess integer values or are binary, then the model requires dis-

crete optimization. The latter requires integer programming (IP), and in a case where a

mix of continuous and discrete decision variables are used, then it requires mixed integer

programming (MIP).

The field of Operations Research has different types of problems, and this thesis

concerns cutting and packing problems, which have a common structure (WÄSCHER;

21

HAUSSNER; SCHUMANN, 2007). These problems have two sets of elements: one of

large objects; one of small items. Both of them are defined exhaustively in a certain

number of geometric dimensions, and subsets of the small items must lie entirely within

its designated large object without overlaps. Furthermore, a single- or multi-dimensional

objective function is optimized and a solution to the problem may result in using either

all or a portion of the large objects and small items. In order to achieve a global optimum,

five sub-problems must be simultaneously solved:

1. Selection problem regarding the large objects;

2. Selection problem regarding the small items;

3. Grouping problem regarding the selected small items;

4. Allocation problem regarding the assignment of the subsets of small items to the

large objects;

5. Layout problems regarding the arrangement of the small items on each of the selected

large objects with respect to the geometric condition.

Although cutting and packing are two very distinct problems in practice, from a

mathematical point of view it does not matter whether the pattern obtained for a given

set of units is interpreted as being a cutting pattern or a packing pattern, which implies

the existence of a “duality” between cutting problems and packing problems, that is, the

duality between cutting material/packing space and cutting space/packing material. Since

the early 1990s, in addition to these two classes of problems, other related or integrated

problems with similar logical structure have been treated as cutting and packing problems

(JUNQUEIRA, 2009).

Although the structure is the same for all cutting and packing problems, these models

can be further subdivided into categories. Wäscher, Haußner & Schumann (2007) propose

a new categorization rooted on a previous one developed by Dyckhoff (1990). In this new

typology, five criteria are used to describe the problems and categorize them, and all

problems where the assumptions in the criteria are broken are treated as variants. In the

following are the five criteria explained:

1. Dimensionality: problems are distinguished between one-, two-, and three-dimensional

ones. In the literature, there also cutting and packing problems with four geometric

dimensions or more (LINS; LINS; MORABITO, 2002), however, in this typology

they are considered variants of lower-dimensional problems;

22

2. Kind of assignment: two basic situations are proposed, one where the output

value is maximized, and another where the input value is minimized. In both

assignments, a set of small items must be assigned to a set of large objects. In the

maximization version, the former is large enough that the latter is not sufficient to

contain all of the small items, removing the sub-problem of selecting large objects.

In this version, a subset of small items with maximal output value has to be selected

and assigned to the large objects. In the second kind of assignment, the set of large

objects is sufficient to accommodate all of the small items, removing the sub-problem

of selecting them. In this version, a subset of large objects with minimal input value

has to be selected, and every small item must be assigned to them;

3. Assortment of small items: three cases are considered, the first with identical

small items, the second with a weakly heterogeneous assortment of small items, and

the third with a strongly heterogeneous assortment of small items. In the first case,

the shape and size of the items is the same, possessing the same length, width and

height depending on the dimensionality, and the demand for the items is infinite. In

the second case, there only a few classes of small items in relation to the total number

of items for which the components have the same shape and size. Furthermore, the

demand for each class of items is either unlimited or relatively large in this case.

Finally, the third case contains only very few elements with the same shape and

size, and the demand for each type of item is one. In this typology, items with the

same shape and size but different orientations are considered different between one

another, and it is assumed that the demands for the items are uniform;

4. Assortment of large objects: for this criteria, only two possibilities are consid-

ered, one with only one large object, and another with several large objects. For

the first possibility, the singular large object can have its dimensions fixed, possess-

ing a predetermined shape and size, or one or more of its dimensions as variable.

For the second possibility, it is assumed that all large objects dimensions are fixed,

and the criteria is further divided into identical large objects, weakly heterogeneous

assortment of large objects and strongly heterogeneous assortment of large objects.

Furthermore, this typology only considers rectangular large objects, treating prob-

lems with non-rectangular ones as variants;

5. Shape of small items: this criteria is only sensible in a two- or three-dimensional

problem, and small items can be distinguished between regular (rectangles, circles,

boxes, cylinders, balls, etc.) and irregular. The precise definition of regular and

irregular is missing from Wäscher, Haußner & Schumann (2007), but a definition

23

can be found in Bennell & Oliveira (2009), where it is stated that a piece is irregular

if it requires a minimum of three parameters to identify it. For example, a rectangle

and a circle are regular since they can be described only by length and width and

by radius, respectively, whereas a trapezoid cannot be described so simply. It is

assumed that the rectangular items are only laid out orthogonally in this typology.

An overview of the categorization structure can be seen in Figure 3, in which the

combination of criteria relevant to the problem determines its level of complexity as either

“basic”, “intermediate” or “refined”. Moreover, problems variants are also considered on

the right side of the figure, and they emerge when a assumption in a criteria is broken,

such as the one mentioned for the dimensionality criteria, or when a uniform distribution

of demands is not the case such as in Riehme, Scheithauer & Terno (1996).

Figure 3: Categorization of Cutting and Packing Problems according to the Five Criteria

Source: Wäscher, Haußner & Schumann (2007)

With the five criteria it is possible to create subcategories of cutting and packing

problems that have different combinations of criteria characteristics. Figure 4 contains

24

the different nomenclatures given for intermediate problems, which can be further dif-

ferentiated based on dimensionality and shape of small items to categorize the refined

problems. These names are taken from the usual nomenclature in the literature, and in

Figure 4 the upper image contains the problems with output maximization, and the lower

image contains ones with input minimization.

Figure 4: Nomenclature of Intermediate Cutting and Packing Problems

Source: Wäscher, Haußner & Schumann (2007)

25

2.1.1 Cutting and Packing of Regular Items

In the cutting and packing literature, the most common assessed objects are rect-

angles, and this research has many applications that have been useful in a number of

industry fields, such as in chip design, integration of circuits, aerospace, apparel, platform

layout and chemicals (WU et al., 2021). Furthermore, these problems have been proven

to be NP-complete (FOWLER; PATERSON; TANIMOTO, 1981), which means that they

cannot be solved by polynomial-time algorithms.

One of the most traditional models for this type of problems comes from Beasley

(1985). In this research, a mixed integer programming model for placing small rectangles

inside a large one is developed. This problem can be classified as a two-dimensional rect-

angular problem, where the large object has fixed length and width and the objective is

output value maximization. In this model, the large rectangle’s positions in the x- and

y-axes are discretized in order to avoid the continuous nature of distances and formulate

a model with finite coordinates. With these integer coordinates, binary variables that

indicate whether a piece is placed with its lower left vertex in a certain position are for-

mulated. Furthermore, in the original paper the author also discussed possible extensions

of the model, contemplating multiple connected large rectangles and the so-called defects,

which prevent certain coordinates of having pieces placed in them. Figure 5 shows an

example of a piece placed according to this model, where L and W represent the length

and width of the large rectangle/object, respectively, Li and Wi represent the length and

width of the small placed rectangle/item, respectively, and p and q represent the integer

coordinates of the bottom left corner of the placed rectangle:

Figure 5: Example of Beasley’s Model

Source: Adapted from Beasley (1985)

The original model by Beasley (1985) has been further extended by Junqueira (2009),

26

a research in which the author contemplates three-dimensional problems and explores

real-world restrictions that required modifications to the model to be contemplated. The

most important contemplated extension for this thesis was the multiple orientations of

the placed boxes, since it is assumed in the original model that the items are orthogonally

placed. For this to work, the author proposes that either each orientation of the boxes

should be considered a different item, or an additional index should be added to the

original binary variables with all the possible orientations of the boxes.

These extensions for real-world conditions are common in the rectangular packing

problems, and the main ones are, according to Júnior et al. (2022): weight distribu-

tion (QUEIROZ; MIYAZAWA, 2014); load bearing (QUEIROZ; MIYAZAWA, 2013);

level packing (BETTINELLI; CESELLI; RIGHINI, 2008; BEKRAR et al., 2010; BEZ-

ERRA et al., 2020); positioning (SILVEIRA; MIYAZAWA; XAVIER, 2013; SILVEIRA;

XAVIER; MIYAZAWA, 2014; KENMOCHI et al., 2009); packing (FEKETE; KAM-

PHANS; SCHWEER, 2014); complexity (KIERKOSZ; LUCZAK, 2014; SALTO; ALBA;

MOLINA, 2008; SUGI et al., 2020); cutting process (HAWA; LEWIS; THOMPSON, 2018;

RINALDI; FRANZ, 2007).

Besides rectangles, there is also a smaller literature for other regular items such as

circles, which can be useful in fiber optic cable manufacturing, container loading, cylinder

packing, dashboard layout (LAI et al., 2022) and in the woodworking industry (HINOS-

TROZA; PRADENAS; PARADA, 2013; SILVA et al., 2022).

2.1.2 Cutting and Packing of Irregular Items

The history of cutting and packing problems with irregular items extends over forty

years, and is one of the variants of the original cutting and packing problems to be

widely researched in the Operations Research field (BENNELL; OLIVEIRA, 2009). These

variants are also called “nesting problem”, and have been proven to be NP-complete

(FOWLER; PATERSON; TANIMOTO, 1981), similar to the version with regular items

(see Section 2.1.1). The applicability of the nesting problems literature can be seen in the

clothing industry, furniture, leather, glass, or sheet metal cutting (LEAO et al., 2020).

Figure 6 shows an example of a nesting problem in the garment industry, in which a set

of sixty four pieces with regular and irregular items is feasibly packed into a rectangular

board.

27

Figure 6: An Example of a Nesting Problem

Source: Leao et al. (2020)

Dealing with the geometry of irregularly-shaped items and guaranteeing that they are

correctly placed in the large object without overlaps is a much harder task than doing

the same for regularly-shaped, and, as a consequence, the results obtained so far in the

literature are much more limited regarding the size of the tackled problem (LEAO et al.,

2020).

There are several different methods used to contemplate the geometry of irregular

items, and a popular and simple one is described by Oliveira & Ferreira (1993), in which

a raster method that discretizes the continuous nature of the large object is used. In

this model, the large object is a rectangle, and for each discretized integer coordinate of

this rectangle a binary variable denotes whether there is a piece in this position or not.

Figure 7 shows an example of how the irregular items were represented in the model by

Oliveira & Ferreira (1993).

Figure 7: The 0-1 Raster Representation for Irregular Pieces

Source: Oliveira & Ferreira (1993)

Other raster representations of irregular items were developed in the literature (SEGEN-

REICH; BRAGA, 1986; BABU; BABU, 2001), but this method is not able to accu-

rately represent irregular items with non-orthogonal edges due to the nature of the raster

discretization. There are other methods that can represent irregular items with non-

orthogonal edges, such as direct trigonometry, no-fit polygon and phi functions, which

28

have been effectively used in nesting problems (LEAO et al., 2020).

The direct trigonometry method has its own set of modelling strategies to describe

irregular items, and one of the most common ones is the D-function (LEAO et al., 2020),

that uses continuous variables to position the items (SCHEITHAUER; TERNO, 1993;

CHERRI et al., 2016; CHERRI; CHERRI; SOLER, 2018). This strategy determines

the relative position between a piece’s vertex and another piece’s edge to avoid overlaps

between them, and was derived from the equation of the distance between a point and

a line (LEAO et al., 2020). Another direct trigonometry strategy is the inner circle one,

where items are defined by a set of inscribing circles (JONES, 2014; ROCHA et al., 2016).

Figure 8 shows a visual representation of the two strategies, with the D-function to the

left, and the inner circle to the right.

Figure 8: The D-Function and Inner Circles Direct Trigonometry Modelling Strategies

Source: Leao et al. (2020)

2.1.3 Polyominoes and Tetrominoes

The irregular items that concern this thesis are called “tetrominoes”, which were first

introduced by Golomb (1954) as a subset of the so-called “polyominoes”. A polyomino

can be defined as a simply-connected set of n squares which are “rook-wise connected”,

which means that a rook placed in any square of the n-omino must be able to get to

any other square in a finite number of moves. Cutting and packing problems involving

polyominoes have real-life applications in different industries. These include sheet metal

stamping, design of printed circuits boards, timber cutting and layout of newspaper pages,

where the geometries of the shapes involved in these processes are similar to polyominoes

(KASHKOUSH; SHALABY; ABDELHAFIEZ, 2012).

The polyominoes study has been historically made by mathematicians in the “tiling”

field of study (GOLOMB, 1966; BODINI, 2003; KLARNER, 1969; REID, 1997, 1997),

which is tied to Operations Research’s cutting and packing problems. It is possible to

describe some tiling problems through cutting and packing problems, and some authors,

29

although not many, recently brought the ”polyominoes tiling” topic into the Operations

Research literature, where the problems are mainly classified as two-dimensional problems

with one large object and irregular small items, and the polyominoes are described through

the constrains of the model.

The first author to formalize a Operations Research model for the cutting and packing

of polyominoes was Kashkoush, Shalaby & Abdelhafiez (2012). In this research, a mixed

integer linear programming model was introduced. The large object was a rectangle with

fixed width and variable length that could be subdivided into unit squares. The objective

of the model was minimizing the large object’s variable length, though indirectly, by

penalizing the placement of polyominoes at higher lengths. A solution produced by this

model can be seen in Figure 9, in which the numbers represent the penalties that are

summed in the objective function and minimized:

Figure 9: Solution for the Model proposed by Kashkoush, Shalaby & Abdelhafiez (2012)

Source: Kashkoush, Shalaby & Abdelhafiez (2012)

Another author of polyominoes cutting and packing problems was motivated by a new

application of polyominoes tiling, the design of phased array antennas (KARADEMIR;

PROKOPYEV; MAILLOUX, 2016). In this problem, the large object is a rectangle with

fixed length and width, and this author modeled the polyominoes through a completely

different logic, using a mixed integer non-linear programming model, which was then

linearized. A solution produced by this model can be seen in Figure 9:

30

Figure 10: Solution for the Model proposed by Karademir, Prokopyev & Mailloux (2016)

Source: Karademir, Prokopyev & Mailloux (2016)

Another author researches the tiling of polyominoes in an irregular large object that

is composed of “rook-connected” squares, maximizing the large object occupation by

assigning “weights” for each polyomino and maximizing their sum (KITA; MIYATA,

2021). The utilized model uses mixed integer programming, and the purpose of this

research was generating polyominoes puzzles, which is a theme seeing in other literature

for these objects (LO; FU; LI, 2009). A solution produced by this model can be seen in

Figure 9:

Figure 11: Solution for the Model proposed by Kita & Miyata (2021)

Source: Kita & Miyata (2021)

The polyominoes with four squares are defined as “tetrominoes”, and they can come

in seven different shapes considering the possible reflections of a tetromino as different

shapes, and the possible rotations as the same shape. These seven types of tetrominoes

can be seen in Figure 12:

31

Figure 12: Seven Types of Tetrominoes

Source: Liu (2017)

These items are famous due to the popular game “Tetris” (TETRIS, 2022), and each

shape has a different coined name due to the letters that they resemble: “O”, “I”, “S”,

“Z”, “L”, “J” and “T”. These items are the main focus of this thesis, and the study

of two-dimensional cutting and packing problems with tetris-like items can be useful

in the arrangement of cargo in vehicles and space modules (FASANO, 2013), and for

dealing with particular cases in the related area of project scheduling problems in which

activities may consume different amounts of a given resource throughout their execution

(HARTMANN, 2000). Furthermore, every application that pertains polyominoes also

pertains tetrominoes, except for instances where specific n-ominoes with n 6= 4 are at

issue.

The literature regarding tetrominoes specifically is even smaller than the one per-

taining polyominoes, and, similarly to the polyominoes one, the problems are mainly

classified as two-dimensional problems with one large object and irregular small items,

and the tetrominoes are described through the constrains of the model. The most relevant

research in the subject was made by Fasano (2013), where the author defines “tetris-like”

items as a cluster of mutually orthogonal parallelepipeds. This definition of a tetris-like

item makes the classification of the items as regular or irregular difficult, and this in

turn allows the classification of problems containing these items as either extensions, or

variations of the problems described in Wäscher, Haußner & Schumann (2007). In the

research that coined this term, the placement of tetris-like items in a convex large object

was modeled through a mixed integer programming model. One example of a tetris-like

item placed in a convex large object can be seen in Figure 13, in which k and h represent

the item’s parallelepipeds:

32

Figure 13: Example of a Tetris-like Item placed in a Convex Space

Source: Fasano (2013)

2.2 MIP Heuristics

An heuristic can be defined as a procedure with a collection of rules or steps that

guides one to a solution that may or may not be the optimal one (LAGUNA; MARTÍ,

2013). The solution set of the majority of real world optimization problems is often large

or infinite, and a heuristic can assist one in finding acceptable solutions to a problem.

This thesis concerns heuristics used in Operations Research models that require mixed

integer programming to be solved (see Section 2.1). These types of problems belong to

the set of NP-complete problems, since they are combinatorial in nature, and this means

that the solution time scales exponentially as the problem size increases in the worst-case

scenario (FLOUDAS; LIN, 2005).

According to Wolsey (1998), there are many reasons that might cause one to employ

an MIP heuristic. The first, and perhaps the most important one, is that a solution is

required rapidly, what might be even more relevant if the instance is so large that it

cannot be formulated as a MIP model of reasonable size. Furthermore, there are certain

combinatorial problems that, such as vehicle routing and machine scheduling, for which

it is easy to find feasible solutions by analyzing the model’s structure.

Given the wide range of applications of MIP in real-world problems, it is only natural

that heuristics that are faster than the optimization procedure would emerge. There

are many of these procedures in the MIP literature (BALAS et al., 2001; SALTZMAN;

HILLIER, 1992; GLOVER; LØKKETANGEN; WOODRUFF, 2000; BALAS; MARTIN,

1980), but this thesis concerns only the relax-and-fix heuristic, introduced and detailed

in the next section.

33

2.2.1 Relax-and-Fix

The MIP relax-and-fix heuristic was first introduced by Dillenberger et al. (1994) for

a lot-sizing problem, where the goal was to optimize the production volumes of various

part types across different machine groups and in different time periods. As stated in the

aforementioned research, the relax-and-fix algorithm does not consider the integrality of

all binary decision variables at once, but successively. This heuristic consists basically in

considering iteratively the integrality of some subset of binary variables and fixing their

values at the end of an iteration.

Figure 14 can be used to better visualize the procedure of the heuristic. In this image,

the horizontal line represent the set of binary variables present in a MIP model, and this

set is divided into four others. The “integer” subset is represented by Ik in iteration k and

contains the originally binary variables which will have their integrality considered, and,

therefore, will be set as binary during the iteration. The “fix” subset is represented by Fk

and contains the variables which will have their values fixed at the end of iteration k with

the results generated from the iteration. The “fixed” subset contains the values of binary

variables which were fixed in previous iterations and will remain so until the last iteration

of the heuristic. Finally, the “relaxed” subset contains the originally binary variables

which will not have their integrality considered, and, therefore, will be set as continuous

during the iteration. At the end of the heuristic, the subset of “fixed” variables coincides

with the complete set of originally binary variables, and a solution for the problem is

obtained (ABSI; HEUVEL, 2019).

Figure 14: Illustration of the Relax-and-Fix Heuristic

Source: Absi & Heuvel (2019)

This heuristic is used very frequently in variants of lot-sizing problems (ABSI; Kedad-

Sidhoum, 2007; ARAUJO; ARENALES; CLARK, 2007; CLARK, 2003; FEDERGRUEN;

34

MEISSNER; TZUR, 2007; MERCÉ; FONTAN, 2003; STADTLER, 2003; AKARTU-

NALI; MILLER, 2009), where the topic concerns production planning across time periods

and the subsets of binary variables are usually based on these different timeframes. It

is always seen in the literature for other problems that also concern scheduling, time-

dependent tasks, such as the traveling umpire problem (OLIVEIRA; SOUZA; YUNES,

2014), where the topic concerns the minimization of distances traveled by umpires in

tournaments with several rounds and the subsets of binary variables are divided accord-

ing to the rounds numbers, and also the maritime inventory routing problem (FRISKE;

BURIOL; CAMPONOGARA, 2022), where the topic concerns the optimization of ship

deliveries across different ports and the subsets of binary variables are divided according

to time, since the schedule for the deliveries is also of concern.

However, the relax-and-fix is also used effectively in other Operations Research prob-

lems that do not necessarily take time into account, such as in the grid-based location

problem (Noor-E-Alam; DOUCETTE, 2012), where the topic concerns resource alloca-

tion across different coordinates in a grid and the subsets of binary variables are divided

according to coordinates, and also in the controlled tabular adjustment problem (BAENA;

CASTRO; GONZÁLEZ, 2015), where the topic concerns tabular data protection, and the

subsets of binary variables are divided according to cells in the table.

Another type of problems in which relax-and-fix heuristics have been applied is the

one this thesis concerns, cutting and packing problems. Keeping to the main trend of

the heuristic of subdividing the variables based on time periods, Oliveira et al. (2020)

describes the utilization of a relax-and-fix heuristic for an extended version of an one-

dimensional Single Stock Size Cutting Stock Problem (see Figure 4), where the delivery

date is also considered in its formulation.

More interestingly for this thesis, Cherri et al. (2016) describes the utilization of this

heuristic for a two-dimensional Open Dimension Problem with irregular items, where

the large object is a rectangle with a fixed width and an infinite length, and the model’s

objective is to minimize this length. In this research, the developed heuristic was a hybrid

of well-know heuristics, and relax-and-fix was the first step of the complete developed

heuristic, being used to provide an initial solution to the problem. In this version of the

relax-and-fix heuristic, the binary variables were subdivided according to the positions of

the small items in the large object, and in order to determine the sizes of the generated

subsets the authors developed an arbitrary method that depended on the characteristics

of the instance.

35

Finally, no researches were found where a relax-and-fix algorithm was used in a

polyomino-related cutting and packing problem.

2.2.2 Fix-and-Optimize

The fix-and-optimize heuristics, also called “exchange” heuristics, are described as an

improvement or a variation of the relax-and-fix heuristics (ABSI; HEUVEL, 2019). This

heuristic, similarly to the relax-and-fix, consists of an iterative procedure where the set of

binary variables is subdivided and each iteration considers the integrality of only a subset

of the variables. However, in the fix-and-optimize heuristic, there are only two subsets

of variables in each iteration: one that contains the originally binary variables which will

have their integrality considered, corresponding to the “integer” subset in the relax-and-

fix heuristic (see Figure 14), and another one that contains the values of binary variables

which were previously fixed, which is similar to the “fixed” subset in the relax-and-fix

heuristic (POCHET; WOLSEY, 2006).

The main difference between the two algorithms is that the fix-and-optimize heuristic

requires a previously obtained solution that will be used for the first iterations of the

algorithm as the “fixed” subset. This initial solution is obtained through other heuristics,

such as the relax-and-fix heuristic, and each iteration of the fix-and-optimize heuristic will

remove a subset of the fixed variables and treat them as binary again, transforming them

into the “integer” subset. Originally, the iterations stopped once one of them could not

improve the result of the objective function, but it is possible to set other termination

criteria for the heuristic. Furthermore, the “fix” subset of the relax-and-fix heuristic coin-

cides with the “integer” subset in this case, since all of the variables with their integrality

should be fixed at the end of an iteration (POCHET; WOLSEY, 2006).

The fix-and-optimize heuristic is also used in lot-sizing problems, and the criteria for

dividing the variables is also dependent on the configuration of the algorithm. Helber

& Sahling (2010) describes an application of the fix-and-optimize heuristic for a multi-

level capacitated lot-sizing problem, where the authors experiment with three criteria for

subdividing the binary variables: product, resource/machine and time period.

This heuristic is also seen in other scheduling-related problems, such as the fleet sizing

and replenishment planning problem (DASTJERD; ERTOGRAL, 2019), which concerns

routine supply runs for various customers and the subsets of binary variables are divided

according to the various customers. It is also seen in the high school timetabling problem

(DORNELES; ARAÚJO; BURIOL, 2014), where the topic is the allocation of teachers to

36

classes in different timeframes and the subsets of binary variables are divided according

to classes, teachers or days. Figure 15 shows the initial solution and three iterations of

the fix-and-optimize heuristic from left to right used in the aforementioned high school

timetabling problem research, with the class as the criteria for subdividing variables:

Figure 15: Example of a Fix-and-Optimize Heuristic

Source: Dorneles, Araújo & Buriol (2014)

Finally, no researches were found where a fix-and-optimize algorithm was used in a

polyomino-related, or in any sort of cutting and packing problem.

37

3 MATHEMATICAL MODELING

In this chapter, the developed mathematical models that encompass all characteristics

of the tetris-like items packing maximization and minimization problems are discussed.

To describe them, two Operations Research cutting and packing formulations (see Sec-

tion 2.1), each with one objective function and various constraints, were developed. These

models are inspired in Beasley (1985), Fasano (2013) and Junqueira (2009) (see Chap-

ter 2).

3.1 Mathematical Representation of Tetrominoes

In order to be able to come up with a model that could describe a tetris-like item,

firstly it was decided that these items would be modeled with two rectangles. After

this, the next logical step is evaluating the positional relationship between the rectangles,

which must be determined to create tetris-like items. Furthermore, since the intention

is to describe a mathematical model that can rotate the pieces, this evaluation must be

performed in every possible rotation. To do this, each item “L”, “J”, “T”, “S” and “Z” (see

Figure 12) was analyzed in four counter-clockwise rotations: 0, 90, 180 and 270 degrees.

Furthermore, the model should contemplate not only tetrominoes, but all shapes that

might resemble the original tetrominoes shapes, the tetris-like items (see Section 2.1.3),

in order to be more general and useful in more situations.

This analysis resulted in images for each shape and rotation, where the position of the

lower-left corners of the rectangles was analyzed, which was inspired in Beasley (1985),

where the formulation of the rectangles follows this logic. Furthermore, for the 0 degrees

rotation, the upper rectangle was arbitrarily defined as rectangle 1, and the lower rectangle

as 2, with the other rotations following this logic, but rotated. In these images, p describes

the position of the lower-left corner of the first rectangle in the x-axis, q describes the

position of the lower-left corner of the first rectangle in the y-axis, l1 and w1 describe the

length and width of the first rectangle, and l2 and w2 of the second rectangle. This was

38

needed to provide a visual basis for the formulation of the model, and the numeration of

the rectangles could have been inverted without the loss of generality, not affecting the

model.

Figure 16 in the following displays the positional relationship of the L-shaped items

in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to

the lower-right image. The formula for the position of the lower-left corner of the second

rectangle was derived by defining the L-shaped items as items in which the left sides

of both rectangles are aligned in the 0 degrees rotation, with the remaining rotations

following suit.

Figure 16: Mathematical Representation of L-shaped Items

Source: The Author

Figure 17 in the following displays the positional relationship of the J-shaped items

in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to

the lower-right image. The formula for the position of the lower-left corner of the second

rectangle was derived by defining the J-shaped items as items in which the right sides

of both rectangles are aligned in the 0 degrees rotation, with the remaining rotations

following suit.

39

Figure 17: Mathematical Representation of J-shaped Items

Source: The Author

Figure 18 in the following displays the positional relationship of the T-shaped items

in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to

the lower-right image. The formula for the position of the lower-left corner of the second

rectangle was derived by defining the T-shaped items as items in which both rectangles

are vertically aligned in the 0 degrees rotation, with the remaining rotations following

suit.

40

Figure 18: Mathematical Representation of T-shaped Items

Source: The Author

For the S- and Z-shaped items, another parameter must be analyzed since it is not

possible to create formulas that relate the positions of the lower-left corner of the rectan-

gles with only the given parameters. How far the second rectangle is from the first must

also be measured, what is described by the parameter ∆l. This parameter can be defined

as the distance between the left sides of the first and second rectangles in S-shaped items,

and between the right sides in Z-shaped items.

Figure 19 in the following displays the positional relationship of the S-shaped items

in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to

the lower-right image. The formula for the position of the lower-left corner of the second

rectangle was derived by defining the S-shaped items as items in which the left sides of

both rectangles are distant ∆l units in the 0 degrees rotation, with the remaining rotations

following suit.

41

Figure 19: Mathematical Representation of S-shaped Items

Source: The Author

Figure 20 in the following displays the positional relationship of the Z-shaped items

in all four rotations in order (0, 90, 180 and 270 degrees), from the upper-left image to

the lower-right image. The formula for the position of the lower-left corner of the second

rectangle was derived by defining the Z-shaped items as items in which the right sides of

both rectangles are distant ∆l units in the 0 degrees rotation, with the remaining rotations

following suit.

42

Figure 20: Mathematical Representation of Z-shaped Items

Source: The Author

It is important to notice that the presented positional relationships between the rect-

angles for each item type are not enough to maintain the intended shape of the item. For

example, if the length and width of both rectangles are equal, they would result in rect-

angles 1 and 2 being squares, and by using the described positional relationships it would

not be possible to create a L-, J- or T-shaped item since the result would be a rectangle

with the larger side twice the size of the smaller one. Therefore, these relationships are

only valid if the dimensions of the items also make sense. One method to guarantee that

the items will have the intended shapes is used in this thesis for the generation of the

instances (see Section 5.1).

3.2 Developed Models

Following the typology of Wäscher, Haußner & Schumann (2007) (see Section 2.1), the

developed models for describing the placement of tetris-like items are two-dimensional.

Furthermore, the tetris-like items can not be easily classified as regular/rectangular or

irregular in this model due to the chosen modelling logic, which uses two rectangles to

form the different tetris shapes. The developed model also allows for generating instances

with different assortments of small items, from identical ones, if the instance has only

43

one item with replicas, to strongly heterogeneous items, if it has various. Regarding the

assortment of large objects, this model contains one large object, denominated “board”,

and two different formulations with non-overlapping constraints were formulated to con-

template both kinds of assignments: output maximization and input minimization. In

the maximization problem, the board has both dimensions fixed and the objective is to

maximize the sum of the value of each item when arranging the tetris-like items (i.e., not

necessarily all available items are used). In the minimization problem, the length of the

board is fixed (x-axis) and the width is variable (y-axis), and the objective is to minimize

the variable dimension of the board when arranging the tetris-like items (i.e., necessarily

all available items are used). Given these characteristics, the maximization model can be

classified as a variation/extension of a 2D-R-IIPP/SLOPP/SKP problem, depending on

the assortment of small items, and the minimization model as a variation/extension of a

2D-R-ODP problem.

The indexes, parameters and variables used in this formulation are shown in the fol-

lowing:

Indexes:

i : index for the item;

f : index for the rectangle number in tetris type items (1 or 2);

g : index for the rotation of the item (1 for 0º, 2 for 90º, 3 for 180º or 4 for 270º);

p, s : indexes for the position in the board of the rectangle’s lower-left corner relative to

the x-axis;

q, r : indexes for the position in the board of the rectangle’s lower-left corner relative to

the y-axis.

Sets:

I : set of all items;

IR : set of rectangular items;

IL, IJ , IT , IS, IZ : sets of items of types “L”, “J”, “T”, “S”, “Z”, respectively;

X : set of all possible integer positions on the board length (x-axis);

Y : set of all possible integer positions on the board width (y-axis);

Xi,f,g : set of possible positions on the board length of rectangle f of item i with orienta-

tion g;

Yi,f,g : set of possible positions on the board width of rectangle f of item i with orientation

g.

44

Parameters:

vi : value of item i;

bi : maximum number of replicas of item i that can be placed inside the board (only in

the maximization problem);

Bi : exact number of replicas of item i that must be placed inside the board (only in the

minimization problem);

(li,f , wi,f) : length and width, respectively, of rectangle f of item i;

∆li : distance in length between the left sides of rectangles 1 and 2 for items of type “S”,

and between the right sides for items of type “Z”;

(L,W) : length and width of the board, respectively.

Decision variables:

xi,f,g,p,q : binary variable, which equals 1 if rectangle f of item i with orientation g is

placed with its lower-left corner at position (p, q), and otherwise equals 0;

W : non-negative real variable, which corresponds to the variable width of the board (only

in the minimization problem).

Additionally, following the inspiration in the models from Beasley (1985), all the

dimensions of the small and large items in the model (li,f , wi,f , ∆li, L and W) have an

integer value, as well as the possible positions p and q of the rectangles in the board. This

limits the number of p and q values, which would be continuous and infinite otherwise. In

the next section, the exact discretization of the board is described, and sets X, Y , Xi,f,g

and Y
i,f,g

are defined. Assuming that all possible integer points in the board are used as

p and q positions in a board with length L = 5 and width W = 5, Figure 21 shows an

example of a rectangle with no rotation and length 2 and width 1 placed in position p = 1

and q = 2:

45

Figure 21: Example of a 5x5 Board with a 2x1 Rectangle

Source: The Author

The constraints to which the models for both the maximization and minimization

problems are subject are shown in the following:

∑
i∈I

2∑
f=1

∑
{p∈Xi,f,1|s−li,f+1≤p≤s}

∑
{q∈Yi,f,1|t−wi,f+1≤q≤t}

xi,f,1,p,q+

∑
i∈I

2∑
f=1

∑
{p∈Xi,f,2|s−wi,f+1≤p≤s}

∑
{q∈Yi,f,2|t−li,f+1≤q≤t}

xi,f,2,p,q+

∑
i∈I

2∑
f=1

∑
{p∈Xi,f,3|s−li,f+1≤p≤s}

∑
{q∈Yi,f,3|t−wi,f+1≤q≤t}

xi,f,3,p,q+

∑
i∈I

2∑
f=1

∑
{p∈Xi,f,4|s−wi,f+1≤p≤s}

∑
{q∈Yi,f,4|t−li,f+1≤q≤t}

xi,f,4,p,q ≤1, ∀s ∈ X, ∀t ∈ Y

(3.1)

xi,2,1,p,q−wi,2
= xi,1,1,p,q, ∀i ∈ IL, ∀p ∈ Xi,f,1,∀q ∈ Yi,f,1

xi,2,2,p+wi,1,q = xi,1,2,p,q, ∀i ∈ IL, ∀p ∈ Xi,f,2,∀q ∈ Yi,f,2

xi,2,3,p+li,1−li,2,q+wi,1
= xi,1,3,p,q, ∀i ∈ IL, ∀p ∈ Xi,f,3,∀q ∈ Yi,f,3

xi,2,4,p−wi,2,q+li,1−li,2 = xi,1,4,p,q, ∀i ∈ IL, ∀p ∈ Xi,f,4,∀q ∈ Yi,f,4

(3.2)

xi,2,1,p+li,1−li,2,q−wi,2
= xi,1,1,p,q, ∀i ∈ IJ ,∀p ∈ Xi,f,1,∀q ∈ Yi,f,1

xi,2,2,p+wi,1,q+li,1−li,2 = xi,1,2,p,q, ∀i ∈ IJ ,∀p ∈ Xi,f,2,∀q ∈ Yi,f,2

xi,2,3,p,q+wi,1
= xi,1,3,p,q, ∀i ∈ IJ ,∀p ∈ Xi,f,3,∀q ∈ Yi,f,3

xi,2,4,p−wi,2,q = xi,1,4,p,q, ∀i ∈ IJ ,∀p ∈ Xi,f,4,∀q ∈ Yi,f,4

(3.3)

46

x
i,2,1,p+

li,1−li,2
2

,q−wi,2
= xi,1,1,p,q, ∀i ∈ IT , ∀p ∈ Xi,f,1,∀q ∈ Yi,f,1

x
i,2,2,p+wi,1,q+

li,1−li,2
2

= xi,1,2,p,q, ∀i ∈ IT , ∀p ∈ Xi,f,2,∀q ∈ Yi,f,2

x
i,2,3,p+

li,1−li,2
2

,q+wi,1
= xi,1,3,p,q, ∀i ∈ IT , ∀p ∈ Xi,f,3,∀q ∈ Yi,f,3

x
i,2,4,p−wi,2,q+

li,1−li,2
2

= xi,1,4,p,q, ∀i ∈ IT , ∀p ∈ Xi,f,4,∀q ∈ Yi,f,4

(3.4)

xi,2,1,p−∆li,q−wi,2
= xi,1,1,p,q, ∀i ∈ IS,∀p ∈ Xi,f,1, ∀q ∈ Yi,f,1

xi,2,2,p+wi,1,q−∆li = xi,1,2,p,q, ∀i ∈ IS,∀p ∈ Xi,f,2, ∀q ∈ Yi,f,2

xi,2,3,p+li,1−li,2+∆li,q+wi,1
= xi,1,3,p,q, ∀i ∈ IS,∀p ∈ Xi,f,3, ∀q ∈ Yi,f,3

xi,2,4,p−wi,2,q+li,1−li,2+∆li = xi,1,4,p,q, ∀i ∈ IS,∀p ∈ Xi,f,4,∀q ∈ Yi,f,4

(3.5)

xi,2,1,p+li,1−li,2+∆li,q−wi,2
= xi,1,1,p,q, ∀i ∈ IZ ,∀p ∈ Xi,f,1,∀q ∈ Yi,f,1

xi,2,2,p+wi,1,q+li,1−li,2+∆li = xi,1,2,p,q, ∀i ∈ IZ ,∀p ∈ Xi,f,2,∀q ∈ Yi,f,2

xi,2,3,p−∆li,q+wi,1
= xi,1,3,p,q, ∀i ∈ IZ ,∀p ∈ Xi,f,3,∀q ∈ Yi,f,3

xi,2,4,p−wi,2,q−∆li = xi,1,4,p,q, ∀i ∈ IZ ,∀p ∈ Xi,f,4,∀q ∈ Yi,f,4

(3.6)

xi,f,g,p,q ∈ {0, 1}, ∀i ∈ I, f = 1, 2, g = 1, 2, 3, 4,∀p ∈ Xi,f,g, ∀q ∈ Yi,f,g (3.7)

In formulation (3.1) - (3.7), constraints (3.1) guarantee that at most one rectangle

positioned with its lower-left corner at some point (p, q) will contain the point (s, t).

Constraints (3.2) - (3.6) relate the position of the lower-left corners of rectangles 1 and 2

of each tetris-like item to create the desired shape of items of types “L”, “J”, “T”, “S”

and “Z”, respectively, for all four possible orientations. Finally, constraints (3.7) define

the domain of the decision variables for the items, which must be binary.

In order to complete the formulation of the maximization model, the constraints (3.1)

- (3.7) that pertain both models must be added to the objective function and constraints

in the following:

max
∑
i∈I

4∑
g=1

∑
p∈Xi,1,g

∑
q∈Yi,1,g

vi ∗ xi,1,g,p,q (3.8)

4∑
g=1

∑
p∈Xi,1,g

∑
q∈Yi,1,g

xi,f,g,p,q ≤ bi, ∀i ∈ I (3.9)

In the formulation (3.8) - (3.9) with (3.1) - (3.7), the objective function (3.8) aims at

maximizing the sum of the values of item replicas placed and arranged within the board. It

is important to notice that if the value vi equals the area of the item (vi =
∑2

f=1li,f ∗wi,f),
then this objective function corresponds to maximizing the total area of item replicas

47

placed within the board. Constraints (3.9) ensure that the number of replicas of each

item within the board is not above the stipulated limit. For both these constraints, it

was decided that only the variables pertaining rectangle 1 are used, ignoring the ones

pertaining rectangle 2, but it is possible to use the second rectangle instead of the first

one in both these equations with no effects on the model whatsoever. The decision to

use the first rectangle came from the fact that the position of the second rectangle was

derived from the position of the first one, and, therefore, continuing to use rectangle 1 as

the “main” rectangle follows logically.

In order to complete the formulation of the minimization model, the constraints (3.1)

- (3.7) that pertain both models must be added to the objective function and constraints

in the following:

minW (3.10)

4∑
g=1

∑
p∈Xi,1,g

∑
q∈Yi,1,g

xi,1,g,p,q = Bi, ∀i ∈ I (3.11)

∑
i∈I

2∑
f=1

xi,f,1,p,q ∗ (q + wi,f)+

∑
i∈I

2∑
f=1

xi,f,2,p,q ∗ (q + li,f)+

∑
i∈I

2∑
f=1

xi,f,3,p,q ∗ (q + wi,f)+

∑
i∈I

2∑
f=1

xi,f,4,p,q ∗ (q + li,f) ≤ W, ∀p ∈ X, ∀q ∈ Y

(3.12)

W ∈ R+ (3.13)

In the formulation (3.8) - (3.13) with (3.1) - (3.7), the objective function (3.8) aims at

minimizing the value of the variable W , which represents the final board width required

to arrange all items as compactly as possible. Constraints (3.11) are similar to constraints

(3.9) in the maximization problem, but instead of ensuring that the number of replicas of

each item within the board is not above a stipulated limit, they ensure that the number of

replicas is equal to the stipulated value Bi. Constraints (3.12) ensure that the replicas of

the items are arranged below the variable width W . Finally, constraints (3.13) define the

domain of the decision variable for the board’s width, which is the positive real numbers,

although in the end the variable will have an integer value due to the nature of the board’s

48

discretization.

Furthermore, for the minimization problem a lower bound for W is given to the

model and it is addressed in this thesis as LowBo. The value of this bound is obtained

by calculating the total area of the items in I for all their replicas Bi using the length

li,f and width wi,f of each item, then dividing the resulting value by the length of the

board L, and, finally, rounding the result to the closest integer above it. The reasoning

for this calculation comes from the fact that, in a best-case scenario, the placed replicas

of the items would form a rectangle with length L, and W would consequently be equal

to the width of this rectangle. Since W is an integer, rounding this width to the closest

integer above it provides a slightly better lower bound. One can better imagine this ideal

situation by supposing that the items could assume a “liquid” form and occupy the board

from bottom to top, resulting in the minimum possible board width.

3.3 Grid Discretization

The first step in generating the variables xi,f,g,p,q, is discretizing the board and gener-

ating sets X and Y . In the last section, an example of a board where all possible integer

positions were used can be seen in Figure 21, a method of discretization called “full sets”.

One interesting question to ask is: could the discretization of the board’s positions be

made in such a way that less points are generated, and no significant solutions are lost

in the process? This is relevant due to the fact that less generated points implies less

generated variables, which in turn results in less work for the solver.

This question has been answered for models that only depict rectangles, and indeed

there are methods for generating variables that produce less points. In Herz (1972) and

Christofides & Whitlock (1977) the “normal patterns” or “conic combinations” methods

are discussed. These authors mathematically proved that, without losing relevant solu-

tions, one can move a rectangle downwards and to the left, until the left and bottom

sides of the rectangle either touch the left and bottom side of the board, or touch the

right and upper side of another rectangle. This means that only the points which are a

combination of the dimensions of the rectangles must be generated for this board. For

example, suppose one has only two rectangles to place on a 10x10 board, rectangle 1

with a length of 3 and width of 2, and rectangle 2 with a length of 4 and width of 3,

and no rotations are allowed. Following the normal patterns logic, there are only four

significant solutions, which are presented in Figure 22 in the following. In this example,

the discretization of the board on the x-axis only has to contemplate the combinations of

49

the lengths of the two rectangles (3 and 4), and only the points p = 0, 3, 4, 7 would have to

be generated, instead of p = 0, 1, ..., 9. On the y-axis, the discretization would only have

to contemplate the combinations of the widths of the two rectangles (2 and 3), and only

the points q = 0, 2, 3, 5 would have to be generated, instead of q = 0, 1, ..., 9. Furthering

the example, if there was one more rectangle with length 1 and width 1, the generated p

values would be p = 0, 1, 3, 4, 5, 7, 8, with p = 5 deriving from the combination 1+4 and

p = 8 from 3+4+1, while the generated q values would be q = 0, 1, 2, 3, 4, 5, 6, with q = 4

deriving from the combination 1+3 and q = 6 from 2+3+1.

Figure 22: Possible Solutions for the Normal Patterns Example

Source: The Author

This method of board discretization can be extremely effective in reducing model com-

plexity. In the mentioned example with two rectangles, the number of (p, q) combinations

was reduced by 84%, and by adding the third rectangle this reduction comes down to

51%. However, in order to apply normal patterns in a model with tetris-like items, some

adaptations are necessary. Firstly, it is not possible to only use the lengths li,f and widths

wi,f to generate the combinations, since the intricate positional relationship between the

50

two rectangles that compose a tetris-like piece creates other dimensions that must be

considered in order to correctly generate the positions along the axes. A simple example

comes from the S-shaped items, which require the position p = ∆li to be generated with

the 0 degrees rotation, in order to place the first rectangle of the item. To obtain all the

dimensions necessary for a normal patterns discretization, it is necessary to calculate the

lengths and widths of all the rectangles generated by superimposing a large rectangular

“hull” on a tetris-like item that extends from its lower-left corner to its upper-right corner.

This is shown in Figure 23 in the following, where the relevant dimensions are represented

by double-headed arrows, and the items are displayed in the “L”,“J”,“T”,“S”,“Z” order,

from the upper-left image to the bottom-right one.

Figure 23: Necessary Dimensions for Normal Patterns Generation

Source: The Author

Even with all the extra dimensions calculated, which can be performed with the

parameters provided to the model, there are still modifications that need to be made in

the normal patterns generation to adapt it to the tetris-like items. For rectangles, the

number of values that need to be combined is always equal to the total number of replicas,

meaning that if one has only one rectangle, the only relevant coordinates are (0, 0) and the

coordinate for the length of the rectangle in the x-axis and for the width of the rectangle

in the y-axis. If one has two rectangles, the combination of the lengths and widths of both

of them needs to be added to the set of coordinates. If one has three, all combinations of

51

three dimensions must be added for each axis, and so on. For tetris-like items, however,

each replica contains multiple dimensions that have to be combined in order to generate

the essential coordinates for that piece, what makes this process very complex using the

usual conic combinations method. Moreover, due to the concave nature of the items,

it is possible that positions where one replica “fills another’s gap” are favorable for the

solution, such as the one in Figure 24 in the following, and some of the necessary values

along the axes might not be generated by this method.

Figure 24: Example of a Position where Two Tetris-like Pieces “Fit”

Source: The Author

One possible solution to these challenges, which is used in this thesis, is generating

all possible combinations for all dimensions in Figure 23 along both axes to adapt to

the dimensional requirements of tetris-like items, and also adding the reflection of these

combinations in regards to the opposite side of the board (L− p or W − q) to incorporate

the positions where tetris-like pieces “fit” into the method. Take for instance one rectangle

of length 4 and width 5 in a board with length 10 and width 10: applying this adapted

methodology, the length and width would have to be used in the combinations for both

axes if rotation was allowed, and all combinations of these values that are esmaller than

the dimensions of the board would be part of sets X and Y . The result would be that

p = q = 0, 4, 5, 8, 9 without considering the reflection on the opposite sides of the board,

and p = q = 0, 1, 2, 4, 5, 6, 8, 9 after adding the reflections, only a 20% reduction from

the full set. This solution is not as impactful as the original normal pattern generation,

especially as the number of items increases and dimensions are added to the set of values

to be combined, however, it can still significantly reduce the number of variables for the

solver. Furthermore, unlike the original conic combinations for rectangles, there is no

analytical proof that this adapted version does not cause information loss. This is very

52

unlikely, since the adaptations to the original normal patterns generations were carefully

developed precisely to avoid this. However, for this reason the effectiveness of this method

is tested and compared to a full set board discretization in Chapter 5.

After discretizing the board, the variable generation is a simple process. It is only

necessary to take the generated X and Y sets, and for each item i and rectangle f and

orientation g remove the values that are above the related board dimension minus the

related item dimension to create sets Xi,f,g and Yi,f,g (L− li,f and W −wi,f for g = 1 and

3, and L− wi,f and W − li,f for g = 2 and 4). This sets are in turn used to generate the

variables xi,f,g,p,q for p ∈ Xi,f,g and q ∈ Yi,f,g. As an example, take a rectangle of length 5

and width 4 and two given sets X and Y . To generate Xi,f,g, one would take all the values

in X that are equal to or smaller than L−5 for g = 1 and 3, and equal to or smaller than

L− 4 for g = 2 and 4, whereas to generate Yi,f,g one would take all the values in Y that

are equal to or smaller than W −4 for g = 1 and 3, and equal to or smaller than W −5 for

g = 2 and 4. It is important to observe that rectangular items, that belong to IR, do not

have a second rectangle and only have two rotations, which means that xi,f,g,p,q variables

for these items are only generated for f = 1 and g = 1, 2.

With the grid discretization methods described in this section it is possible to run the

model with a solver.

53

4 SOLUTION APPROACH

In this chapter, the heuristic algorithms developed for both the maximization and

minimization models are discussed in detail, in order to expose the intricacies of the

heuristic algorithms that can affect the obtained results.

4.1 Relax-and-Fix Heuristic

As mentioned in Section 2.2.1, a relax-and-fix heuristic divides a MIP problem into

sub-problems by determining subsets of variables that, in an iteration of the heuristic, are

either fixed, continuous, or binary.

However, this definition allows several parameters to be different between relax-and-

fix algorithms, and all the relevant ones are discussed here. First of all, the developed

algorithm does not directly divide the variables into subsets, but rather divides the board

width (or initial board width in the minimization case) into horizons. In a given iteration,

the board can be divided into four horizons, with the first one placed in the bottom of

the board, and the last one at the top of the board, what can be seen in Figure 25:

54

Figure 25: One Iteration of the Relax-and-Fix Heuristic

Source: The Author

Each horizon can be defined as follows:

1. Previously fixed variables: contains xi,f,g,p,q variables that have been fixed in

previous iterations if their value was decided to be 1, and xi,f,g,p,q binary variables

that were not fixed in previous iterations since their value was deemed as 0. Not

fixing variables, whose value was deemed as 0 in previous iterations is intended to

give the chance for following iterations to use empty spaces to place new pieces that

might require it.

2. Variables to fix: contains binary xi,f,g,p,q variables that will either be fixed as 1

at the end of the iteration if decided by the heuristic, or remain as binary if the

algorithm sets their value as 0.

3. Insightful variables: contains xi,f,g,p,q binary variables that will not be fixed, in-

dependently of the algorithm’s decision. This horizon is optional, since it is not

necessary for a relax-and-fix heuristic, and also increases the number of binary vari-

ables in an iteration, slowing the algorithm down. However, if used, this horizon

allows the heuristic to choose better placements of the pieces by giving the algo-

rithm the ability to accommodate for pieces that will be placed and fixed in future

iterations.

4. Relaxed variables: contains xi,f,g,p,q continuous variables that will not be fixed,

independently of the algorithm’s decision.

55

Before running the heuristic, the width of horizon 2 and 3 must be decided. These

parameters are shown in the following, and can be visualized as the yellow and red double-

headed arrows in Figure 25, respectively:

Heuristic Parameters:

fix : width of the “variables to fix” horizon;

ins : width of the “insightful variables” horizon;

The most important parameter is fix, which must be larger than or equal to 1 and

smaller than the board width (W), since using the board width as fix would simply result

in the monolithic model. Conversely, ins can have a value of 0, what would cause it to

be nonexistent in the heuristic, and must be smaller than or equal to W − fix. Logically,

both parameters must have a positive value since there are no negative q coordinates.

The procedure of the heuristic starts with horizon 2 (variables to fix) placed at the

bottom of the board, where all variables that have a q value from 0 to fix − 1 will be

fixed at the end of the iteration if their value is deemed as 1. If ins is larger than 0, then

above horizon 2 is horizon 3 (insightful variables), where all variables that have a q value

from fix to fix + ins− 1 will be binary during the iteration. Above either horizon 2 or

3, depending on whether ins is 0, is horizon 4, where all variables that have a q value

from fix + ins to W − 1 will be continuous during the iteration. This relaxed model

is then optimized, ending the iteration. After the first iteration, each horizon will move

up by fix and horizon 1 will appear bellow horizon 2, containing the saved information

about previous iterations. The process of moving up the horizons will repeat itself until

the last iteration, where only horizon 1 and 2 will be present, since the last variables are

being fixed. At the end of the last iteration, the algorithm results in the solution for the

heuristic. The progression of the algorithm can be seen in Figure 26, in an example where

fix is one third of the board and ins is one sixth of the board. The images are in order

of first iteration on the left, to third and last iteration on the right:

56

Figure 26: Progression of the Relax-and-Fix Heuristic

Source: The Author

Without the use of normal patterns (see Section 3.3), this approach of dividing the

board into horizons has the same effect as directly dividing the variables uniformly based

on their q value, with each iteration having the same number of binary variables, excluding

the ones in the fixed horizon. The exception are the last iterations due to the proximity

to the board edge and the way variables are generated, which causes the last iterations to

have less binary variables in the second horizon than the others. However, with the use of

normal patterns, it is possible that different iterations will have different numbers of binary

variables in horizon 2, since the xi,f,g,p,q variables might not exist for certain q values. The

design of the algorithm was intended to capture different variable generation methods

with the same logic, and, therefore, the choice of dividing the variables as described is

appropriate.

Furthermore, each iteration has a time limit to ensure that the heuristic is feasible for

use in a adequate amount of time. This time limit for each iteration is equal to 30 minutes

divided by the number of total iterations that will be run, what is consistent for the time

limit set in the monolithic model (see Section 5.1). If the time runs out for an iteration,

the algorithm returns the information that no solution was found in the timeframe.

Finally, for the minimization problem, the lower bound (LowBo) used in the mono-

lithic model was removed in order to encourage the heuristic to place pieces below this

bound, since these problems only take the final width of the board (W) into consideration,

and setting a lower bound can make the heuristic indifferent to the placement of pieces

below this threshold.

57

4.2 Fix-and-Optimize Heuristic

As mentioned in Section 2.2.2, a fix-and-optimize heuristic divides a MIP problem into

sub-problems by determining subsets of variables that, in an iteration of the heuristic, are

either fixed, or binary.

However, this definition allows several parameters to be different between fix-and-

optimize algorithms, and all the relevant ones are discussed here. First of all, similarly

to the last heuristic, the developed algorithm does not directly divide the variables into

subsets, but rather divides the board width (or initial board width in the minimization

case) into horizons. In a given iteration, the board can be divided into two horizons, what

can be seen in Figure 27:

Figure 27: One Iteration of the Fix-and-Optimize Heuristic

Source: The Author

Each horizon can be defined as follows:

1. Fixed variables: contains xi,f,g,p,q variables that have been fixed in previous it-

erations independently of their assigned value. There is an exception for the first

iterations, since the board has not been completely swept and fixed by this heuristic

yet. For these iterations, this horizon contains xi,f,g,p,q variables that have been fixed

in the previous heuristic, which, in this thesis, is the relax-and-fix heuristic. This

means that, logically, the fix-and-optimize heuristic cannot work without an initial

solution.

58

2. Variables to fix: contains binary xi,f,g,p,q variables that will be fixed at the end of

the iteration independently of their assigned value.

Before running the heuristic, the width of horizon 2 must be decided. This parameter

is shown in the following, and can be visualized as the yellow arrow in Figure 27:

Heuristic Parameter:

opt : width of the “variables to fix” horizon;

This parameter must be larger than or equal to 1 and smaller than the board width

(W), since using the board width as opt would simply result in the monolithic model.

Logically, this parameter must have a positive value since there are no negative q coordi-

nates.

The procedure of the heuristic starts with horizon 2 (variables to fix) placed at the

bottom of the board, where all variables that have a q value from 0 to opt−1 will be fixed

at the end of the iteration. Above horizon 2 is horizon 1, where all variables that have a q

value from opt to W − 1 will have fixed values obtained from the previous solution. This

relaxed model is then optimized, ending the iteration. After the first iteration, horizon

2 will move up by opt and horizon 1 will appear bellow horizon 2, containing the saved

information about previous iterations. The process of moving up the horizons will repeat

itself until an iteration where horizon 2 will touch the upper edge of the board, where

all variables that have a q value from W − opt to W − 1 will be fixed at the end of

the iteration. At this point, if the termination criteria is not reached, the process will

restart with horizon 2 placed at the bottom of the board, until the termination criteria

is indeed reached. Interestingly, since all variables have a fixed value at the end of each

iteration, each iteration provides a complete solution to the problem. The progression of

the algorithm can be seen in Figure 28, in an example where opt is one third of the board.

The images are in order of first iteration on the left, to third iteration on the right. At

the third iteration, the process would either end, if the termination criteria was reached,

or start over with the fourth iteration possessing a similar configuration as the first one,

but with fixed variable values from the three previous fix-and-optimize iterations, and not

from the relax-and-fix heuristic.

59

Figure 28: Progression of the Fix-and-Optimize Heuristic

Source: The Author

The developed termination criteria checks at every iteration in which horizon 2 touches

the upper edge of the board, such as the right-most image in Figure 28, whether the

objective function has improved at any point during this so-called “board sweep”. If

so, the heuristic continues to run, and horizon 2 is again placed at the bottom of the

board. If there is not an improvement, then the heuristic stops and the last generated

solution is returned. Furthermore, the heuristic has a smart trigger for stopping in the

maximization problem if the values vi of the items are equivalent to their areas. In such

cases, the algorithm checks whether the value of the objective function for the solution of

every iteration reached the area of the board, since this implies that an optimal solution

was reached. If so, the algorithm stops and returns this solution.

Furthermore, each iteration has a time limit to ensure that the heuristic is feasible

for use in an adequate amount of time. This time limit for each iteration is equal to 30

minutes divided by the number of total iterations necessary for horizon 2 to sweep the

board, what is consistent for the time limit set in the monolithic model (see Section 5.1). If

the time runs out for an iteration, the algorithm returns the information that no solution

was found in the timeframe. It is important to notice that it is theoretically possible

that the heuristic ends up running for an excessively long time if the termination criteria

is not reached in any sweep, what could happen with small increments in the objective

function at every turning point in the heuristic. However, although theoretically possible,

this issue is of no concern due to its unlikeliness. Furthermore, the lower bound (LowBo)

was also removed for this heuristic.

60

5 COMPUTATIONAL TESTS

In this chapter, the generation of the instances for the maximization and minimization

problem used for testing the models and heuristics will be detailed, and the results for

both will be presented and discussed. For the monolithic models, the results of the version

with normal patterns are compared to the ones with full sets (see Section 3.3). For the

heuristics, the results are designed to find the best heuristic parameters combination (see

Chapter 4). Furthermore, the results between the monolithic models and the heuristics

are also compared in order to validate the efficiency of the heuristics.

5.1 Generated Test Instances

The main test instances used a pseudo-random generation of parameters for the tetris-

like items, which were drawn from certain values that varied for each parameter and for

each item type. Each dimension of each tetris-like item type was sorted into one of two

categories, large dimension or small dimension, and this was done so that the item types

would retain the shapes of the original tetris-like pieces. Thus, small dimensions were

drawn from the numbers {4, 6, 8}, and large dimensions were drawn from the numbers

{10, 12, 14}. In Table 1 are the classifications of the dimensions by item type (i.e., “L”,

“J”, “T”, “S”, “Z”):

Table 1: Dimensions Classification by Type of Piece
L J T S Z

li,1 small li,1 small li,1 large li,1 large li,1 large
wi,1 large wi,1 large wi,1 small wi,1 small wi,1 small
li,2 large li,2 large li,2 small li,2 large li,2 large
wi,2 small wi,2 small wi,2 small wi,2 small wi,2 small
∆li - ∆li - ∆li - ∆li small ∆li small

Source: The Author

The sizes of the numbers from which the dimensions were drawn were selected in

order to create items with areas that did not occupy neither too much nor too little of

61

the are of the board. For the maximization problem, the dimensions of the board for all

the generated instances were set as L = 40 and W = 40, resulting in a square board. For

the minimization problems, the dimensions were set as L = 40 and W = 100, resulting in

a rectangular initial board.

Twelve instances were generated containing the following items: 1 item type “L”; 5

items type “L”; 1 item type “J”; 5 items type “J”; 1 item type “T”; 5 items type “T”; 1

item type “S”; 5 items type “S”; 1 item type “Z”; 5 items type “Z”; 1 item for each type

“L”, “J”, “T”, “S”, “Z”; 5 items for each type “L”, “J”, “T”, “S”, “Z” resulting in 25

items in total. These instances are represented in the results, respectively, as: 1L; 5Ls;

1J; 5Js; 1T; 5Ts; 1S; 5Ss; 1Z; 5Zs; 1Each; 5Each. The numbers of items in each instance

were purposefully chosen to compare the results for instances with more items than the

others. For each instance, the dimensions of each item were generated iteratively until all

items of the same type had different sizes. Table 2 presents the parameters of each item

of each generated instance, where the columns represent the instances and each block of

8 rows, marked by the colors white and grey, represent the parameters of an item:

62

Table 2: Generated Instances
1L 5Ls 1J 5Js 1T 5Ts 1S 5Ss 1Z 5Zs 1Each 5Each

li,1 6 6 4 6 14 12 12 12 14 10 6 4 4 12 12 10
wi,1 14 10 10 12 8 4 6 4 6 8 10 14 14 8 4 6
li,2 10 14 10 12 6 4 10 12 12 10 14 12 10 8 12 12
wi,2 8 6 6 4 6 6 8 6 8 4 6 6 6 8 6 6
∆li - - - - - - 6 8 6 4 - - - - 8 8
bi 9 6 15 5 10 12 10 13 8 11 4 10 11 7 10 3
Bi 10 3 16 3 11 5 11 3 9 3 3 1 1 1 1 1

Type L L J J T T S S Z Z L L J T S Z
li,1 4 6 12 10 10 8 8 8 10 12 10
wi,1 10 10 6 4 8 14 10 10 4 4 6
li,2 10 12 8 14 12 12 10 14 6 10 14
wi,2 8 8 6 6 8 6 8 4 8 4 6
∆li - - - 6 8 - - - - 4 6
bi 5 8 2 7 1 2 4 4 1 10 8
Bi 3 3 3 3 2 2 1 1 1 1 1

Type L J T S Z J L J T S Z
li,1 6 8 14 14 12 12 8 8 14 14 14
wi,1 12 10 6 4 6 8 10 12 6 4 8
li,2 12 12 6 12 12 8 12 12 6 12 12
wi,2 4 6 8 4 8 6 6 4 4 4 8
∆li - - - 4 8 - - - - 6 4
bi 13 10 6 2 8 8 1 11 10 1 6
Bi 3 3 3 4 2 3 1 1 1 1 1

Type L J T S Z T L J T S Z
li,1 4 4 10 14 12 12 4 6 10 14 10
wi,1 12 10 8 6 8 8 14 10 4 4 4
li,2 10 14 6 10 10 14 12 10 6 12 14
wi,2 8 8 8 8 4 8 4 4 6 8 4
∆li - - - 6 4 4 - - - 8 6
bi 2 7 4 2 4 1 10 6 11 2 4
Bi 3 3 3 2 3 2 1 1 1 1 1

Type L J T S Z S L J T S Z
li,1 6 6 12 10 14 14 6 4 12 10 10
wi,1 14 10 6 4 8 6 14 14 8 8 4
li,2 14 14 8 12 14 10 14 14 4 10 10
wi,2 4 6 8 6 4 8 4 8 4 8 6
∆li - - - 4 4 4 - - - 4 8
bi 1 11 11 8 4 9 8 2 5 6 7
Bi 3 3 3 3 2 2 1 1 1 1 1

Type L J T S Z Z L J T S Z

Source: The Author

Besides the dimension for each item in each instance, this table also contains the

number of replicas of each item (see Section 3.2). For the maximization problem, this

value is represented by bi and was generated through two methods. For the instances with

only one item, this value was chosen through a deterministic formula so that the 40x40

board could be occupied as much as possible, while for the instances with more than one

item, this value was randomly generated iteratively using integers from 1 to 14, until the

sum of the areas of the items resulted in at least the board area. For the minimization

problem, this value is represented by Bi and was generated through one method only.

The intention behind this method is generating a W that is close to 40, similar to the

maximization problem. The method work as follows: take the area of the intended final

board of 1600, divide by the number of items in the instance, divide this number by the

area of the item and round the number up to the closest integer.

63

It is important to notice that the value of each item is missing from Table 2 for the

maximization problem. This is the case, because the value of each item was set as the

value of their areas, which is li,1 ∗wi,1 + li,2 ∗wi,2. This way, the model and heuristics will

aim at maximizing the occupied area of the 40x40 board instead of an item value with no

meaning for our computational tests.

Another important topic to discuss are the results generated from the optimization

procedures and the heuristics. For the monolithic models of both problems the following

data was analyzed:

1. Objective: the value of the objective function at the end of the optimization

procedures. This is the most important result from the models since the objective

function is the object of optimization in all Operations Research problems. For the

maximization model, this value equals the sum of the values of the items that were

placed in the board, and for the minimization problem, the final width of the board.

2. Run Time: measured in seconds, it is either the amount of time it took the

algorithm to produce the optimal solution, or the time limit for the procedure (see

Section 3.2). This information gives an insight into the difficulty of running an

instance, since the more it takes to run it, the more difficult it is for the algorithm

to find the optimal solution. For the monolithic models there was a given run time

limit of thirty minutes for each instance which was used to make solving an instance

time-realistic, and to better compare the monolithic results with the heuristic ones.

3. Absolute GAP: the difference between the value of the objective function for the

solution and the theoretical calculated best possible value for the problem. This

data shows how close the algorithm was to finding the best possible solutions in

case the time limit was reached, and has the value of 0 if the optimal solution was

found.

4. Relative GAP: the absolute GAP divided by the the value of the objective function

for the solution. This data also indicates how close the algorithm was to finding the

best possible solutions in case the time limit was reached, however, it is measured

in relative terms, generalizing better for instances with very different parameters,

what is not the case in this thesis.

5. Iterations: the number of iterations that the solver took to find the solution. This

information also gives an insight into the difficulty of running an instance, since the

more take it takes to run it, the more work it took the solver to find the solution.

64

6. Equations: the number of constraints equations generated by the instance. This

value is independent of the solution since it depends on the parameters of the in-

stance, but also gives an insight into the difficulty of running an instance, since the

more take it takes to run it, the more work it probably will take the solver to find

the solution.

7. Variables: the number of xi,f,g,p,q variables generated by the instance. This value is

independent of the solution, since it only depends on the parameters of the instance,

but also gives an insight into the difficulty of running an instance, since the more

take it takes to run it, the more work it probably will take the solver to find the

solution.

8. Images: the images of the boards with the placed items from the found solution.

Although some are presented in this section as examples, they can all be seen in

Appendix A for the maximization problem with normal patterns, and Appendix B

for the minimization problem with normal patterns.

For the heuristics, the following data was analyzed:

1. Objective: the value of the objective function at the end of the heuristic proce-

dures. Similar to the monolithic models, this is the most important result from the

heuristic.

2. Run Time: measured in seconds, it is either the amount of time it took the algo-

rithm to produce the solution, or the time limit for the procedure (see Chapter 4).

Similar to the monolithic models, this information gives an insight into the diffi-

culty of running an instance. The time limitation for the heuristics is explained in

Chapter 4.

3. Feasibility: the feasibility of the instance at any point in the heuristic. This data

was analyzed since it is possible that the placement of the pieces in the boards can

done in such a way by the heuristics, that it becomes infeasible to comply with the

constraints at later iterations of the algorithm. It is possible that an instance is

infeasible even for the monolithic models, but their parameters were generated to

avoid such an occasion.

4. Images: the images of the boards with the placed items from the found solution.

Some are presented in this section as examples.

65

The results from the monolithic models that are not included here do not apply for

the heuristics, since the iterative nature of the heuristics take the meaning out of the

GAP function, and also out of the number of equations and number of variables, given

that each iteration will have a different ones.

5.2 Results for the Maximization Problem

In this section, the results from both the monolithic model and the heuristics for the

maximization problem are discussed. As described in Section 3.2, the aim of this model is

maximizing the value of the placed pieces, and since the value of the items in the twelve

instances correspond to the item’s area, this problems aims at maximizing the occupation

of the board.

5.2.1 Monolithic Model

In Table 3, the results for the monolithic model of the maximization problem can be

seen. Two scenarios were compared: one where the full sets for grid discretization were

used, and another where the adapted normal patterns were used (see Section 3.3). The

values in bold indicate that the time limit was reached for an instance.

66

Table 3: Results for the Monolithic Model Maximization Problem
1L 5Ls 1J 5Js 1T 5Ts

Objective 1312 1592 1600 1560 1184 1504
Run Time 3,67 1005,76 1,92 1714,96 3,47 996,70
Abs GAP 0,00 0,00 0,00 0,00 0,00 0,00
Rel GAP 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Iterations 4352 1045184 1988 945998 1327 755933
Equations 6582 29066 7158 29066 6582 29066

F
u
ll

S
e
ts

Variables 7872 41312 8928 40944 8464 43680

Objective 1312 1592 1600 1560 1184 1504
Run Time 0,31 19,27 0,16 48,22 0,15 37,43
Abs GAP 0,00 0,00 0,00 0,00 0,00 0,00
Rel GAP 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Iterations 424 34785 514 388708 354 112395
Equations 2978 8906 3126 8906 2978 8906

W
it
h

N
P

Variables 2096 10984 2368 10888 2248 11592

1S 5Ss 1Z 5Zs 1AllShapes 5AllShapes

Objective 1216 1420 1080 1432 1460 1560
Run Time 2,77 1800,08 9,42 33,57 1013,66 1802,45
Abs GAP 0,00 24,00 0,00 0,00 0,00 40,00
Rel GAP 0,00% 1,69% 0,00% 0,00% 0,00% 2,56%
Iterations 1875 2572216 5882 4446 1137073 197349
Equations 6582 29066 6582 29066 26186 138606

F
u
ll

S
e
ts

Variables 8152 41528 7608 40464 39456 209584

Objective 1216 1420 1080 1432 1460 1592
Run Time 0,40 167,74 0,19 1,64 17,64 1800,33
Abs GAP 0,00 0,00 0,00 0,00 0,00 8,00
Rel GAP 0,00% 0,00% 0,00% 0,00% 0,00% 0,50%
Iterations 622 1039120 28 1446 142265 965233
Equations 2978 8906 2978 8906 8166 37806

W
it
h

N
P

Variables 2168 11040 2028 10764 10504 55696
Source: The Author

All the values of the objective functions have physical interpretations, such as items

placed on a board or cuts made on a large piece of cloth (see Section 2.1.3), and in order

to visualize the physical manifestations of the results, Figure 29 shows the resulting image

for one of the instances:

67

Figure 29: Resulting Figure for the “1Each” Instance with Normal Patterns

Source: The Author

In order to analyze the influence of the normal patterns in the model, four indicators

are analyzed: run time, iterations, equations and variables. To analyze them, the ratio

between the results of each instance without and with normal patterns was calculated

and averaged. The resulting ratios are, respectively: 25.7, 23.7, 2.9, 3.8. These ratios

show that the normal patterns have a great influence in the maximization model, since

their use reduces greatly the run time and the iterations that the solver uses, and have

a smaller, but significant impact in the number of equations and variables. Furthermore,

we can see in Table 3 that for the instance “5Ss” the model with full sets was not able

to find the optimal solution, while the one with normal patterns was. Furthermore, for

the instance “5Each”, although neither version drove the GAP to 0, the one with normal

patterns found a better solution.

In order to analyze the influence of the number of items in the model, the same four

indicators are analyzed: run time, iterations, equations and variables. To analyze them,

the ratio between the results of each instance with five times more items and the one with

5 times less items was calculated and averaged only for the version with normal patterns.

The resulting ratios are, respectively: 193.1, 480.8, 3.2, 5.1. The ratios show that the

number of items has a great influence in the maximization model, even larger than the

normal patterns, in all indicators, since their use reduces greatly the run time and the

iterations that the solver uses, and has a smaller, but significant impact in the number of

equations and variables.

In conclusion, the developed model is able to contemplate the maximization cutting

and packing problem with tetris-like items, and the adapted normal patterns are useful

and provide great results.

68

5.2.2 Relax-and-Fix Heuristic

For the maximization relax-and-fix heuristic, 9 combinations of the relax-and-fix

heuristic parameters were compared (see Section 4.1). The tested values of the fix param-

eter where {4,5,8}, representing, respectively, one tenth, one eighth and one fifth of the

board width (W = 40), while the ones of the ins parameter where {0,4,5}. Furthermore,

all the instances used normal patterns. The results for the relax-and-fix heuristic of the

maximization problem can be seen in Table 4 and Table 5. The first presents the values

for the objective function and the second for the run time. The values in bold indicate

that the value corresponds to the best for the instance. Furthermore, “R” represents the

value of the fix parameter, and “F” of the ins parameter.

Table 4: Results for the Relax-and-Fix Maximization Problem - Objective
R4,F0 R4,F4 R4,F5 R5,F0 R5,F4 R5,F5 R8,F0 R8,F4 R8,F5

1L 1312 1312 1312 1312 1312 1312 1312 1312 1312
5Ls 1592 1592 1592 1592 1592 1592 1592 1592 1592
1J 1600 1600 1600 1600 1600 1600 1600 1600 1600
5Js 1548 1548 1548 1548 1548 1548 1548 1548 1548
1T 1184 1184 1184 1184 1184 1184 1184 1184 1184
5Ts 1416 1456 1448 1412 1456 1456 1416 1456 1448
1S 1216 1216 1216 1216 1216 1216 1216 1216 1216
5Ss 1392 1392 1392 1392 1392 1392 1392 1392 1404
1Z 1080 1080 1080 1080 1080 1080 1080 1080 1080
5Zs 1416 1432 1432 1416 1432 1432 1432 1432 1432
1Each 1436 1460 1460 1436 1396 1396 1460 1436 1436
5Each 1568 1584 1564 1560 1564 1564 1584 1544 1592

Source: The Author

Table 5: Results for the Relax-and-Fix Maximization Problem - Run Time
R4,F0 R4,F4 R4,F5 R5,F0 R5,F4 R5,F5 R8,F0 R8,F4 R8,F5

1L 1,15 1,10 1,19 0,99 1,15 1,11 1,03 1,06 1,59
5Ls 29,71 26,57 30,67 11,24 21,19 21,83 17,49 8,20 93,29
1J 0,82 0,62 0,73 0,78 0,57 0,75 0,50 0,39 0,37
5Js 20,09 31,33 45,11 19,67 43,11 41,37 26,16 28,36 36,19
1T 0,74 0,72 0,80 0,80 0,64 0,66 0,52 0,60 0,46
5Ts 44,50 44,83 43,63 54,58 38,67 39,91 42,12 36,74 63,59
1S 0,86 0,88 0,88 0,79 0,91 0,77 0,64 0,60 0,59
5Ss 32,65 37,68 37,71 29,26 39,14 39,97 29,04 137,65 148,86
1Z 0,95 0,66 0,87 0,55 0,76 1,05 0,47 0,42 0,44
5Zs 5,57 6,51 6,75 5,58 5,49 5,56 4,40 5,81 3,80
1Each 11,30 14,08 17,92 10,59 16,96 16,93 11,13 16,26 15,42
5Each 32,59 110,96 250,34 92,74 193,45 211,26 92,05 80,43 322,11

Source: The Author

Regarding the feasibility of the heuristic, due to the nature of the maximization prob-

lem it is impossible for the heuristic to produce an infeasible result. This happens because

in the worst-case scenario, no pieces would be placed on the board, and the objective func-

tion would result in 0 without breaking any constraints of the model. That is different

for the minimization problem, since one of its constraints is stricter: the constraint of the

number of replicas. For the minimization problem, this constraint requires the placement

69

of the exact number of pieces Bi, while the maximization problem uses bi only as an upper

limit.

In order to better visualize the procedure of the heuristic, Figure 30 presents the

graphical results at the end of each of the five iterations of the relax-and-fix heuristic for

the “1Each” instance with fix = 8 and ins = 0 in sequence from the upper left image,

to the lower right one:

Figure 30: Resulting Figures for the “1Each” Instance with “R8,F0”

Source: The Author

Which combination of the fix and ins parameters is best is a debatable topic, since

there is not a clear winner in neither the run time, nor the objective results. Based on

the objective value, the two most attractive options are “R4,F4” and “R8,F5”, since they

have the highest number of best values. Analyzing the run times, it is noticeable that the

run times for “R8,F5” are erratic, since the combination of parameters possesses several

worst and best values. Therefore, the chosen best combination of parameters is the more

stable one, “R4,F4”.

In order to evaluate the efficiency of the heuristic in comparison to the monolithic

model, two indicators are analyzed: objective and run time. To analyze both of these

results, the “R4,F4” relax-and-fix heuristic is compared to the monolithic model with

normal patterns, since they were also used here. To analyze the objective, the number

of instances where the heuristic produced either the same or better results than the

monolithic model is calculated, and to analyze the run time, the ratio between the results

70

of each instance from the “R4,F4” heuristic and the monolithic model is calculated. The

resulting values are, respectively: 8 out of the 12 instances and 2.2 times. This means

that in only 4 instances the heuristic did not produce the best results, and that the

heuristic actually took more time than the monolithic model to run. The latter insight

calls for a more intricate analysis, since it is expected that an heuristic runs faster than

its monolithic model. Analyzing the data in more detail, it is possible to see that the

heuristic performs better for more complex instances with more items. For example, the

monolithic model could not prove an optimal result for the “5Each” instance in 1800

seconds, while the relax-and-fix heuristic reached a result in approximately 110 seconds,

more than ten times faster, and the result is only worse by a value of 8. This observation is

probably due to the fact that the simple instances of the maximization monolithic model

ran so fast, that the iterative nature of heuristic ended up making it take longer to run

these instances. Furthermore, the average run time of the instances for the monolithic

model with normal patterns is 174.5 seconds, while for the relax-and-fix heuristic with

normal patterns is 23.0 seconds, indicating that the heuristic is indeed faster.

As a conclusion, it is possible to state that the relax-and-fix heuristic for the maxi-

mization problem is effective, since it produces objective values similar to the monolithic

model, but, although fast, the heuristic is faster for more complex instances. This is fa-

vorable for this heuristic in a practical setting, since it makes more sense to use heuristics

for more complex problems that take too long for the monolithic model to run.

5.2.3 Fix-and-Optimize Heuristic

For the maximization fix-and-optimize heuristic, 3 different values for opt were com-

pared, using the worst combination of the relax-and-fix maximization parameters fix = 5

and ins = 0 (or “R5,F0”) (see Section 4.2). The tested values of the opt parameter

where {4,5,8}, representing, respectively, one tenth, one eighth and one fifth of the board

width (W = 40). Furthermore, all the instances used normal patterns. The results for

the fix-and-optimize heuristic of the maximization problem can be seen in Table 6, which

presents the values for the objective function. Furthermore, “R” represents the value of

the fix parameter, “F” of the ins parameter, and “O” of the opt parameter.

71

Table 6: Results for the Fix-and-Optimize Maximization Problem - Objective
R5,F0,O4 R5,F0,O5 R5,F0,O8

1L 1312 1312 1312
5Ls 1592 1592 1592
1J 1600 1600 1600
5Js 1548 1548 1548
1T 1184 1184 1184
5Ts 1412 1412 1412
1S 1216 1216 1216
5Ss 1392 1392 1392
1Z 1080 1080 1080
5Zs 1416 1416 1416
1Each 1436 1436 1436
5Each 1560 1560 1560

Source: The Author

Determining which value of the opt parameter is best is not possible for this data set,

since every solution for every instance.

In order to evaluate the efficiency of this heuristic in comparison to the relax-and-fix

heuristic only the objective is analyzed. To analyze this result, any of the tested results

is compared to the “R5,F0” relax-and-fix heuristic, since they all have the same results.

To analyze the objective, the number of instances where this heuristic produced either

the same or better results than the relax-and-fix heuristic is calculated. The resulting

value is 0 out of the 12 instances. This result calls for a more intricate analysis, since it

is expected that the results of the relax-and-fix heuristics are improved by the fix-and-

optimize heuristic. Analyzing the data in more detail, it is possible to see that 6 out of the

12 instances already possessed the same objective value in “R5,F0” as the optimal solution

from the monolithic model, which means that the fix-and-optimize heuristic could only

possibly improve the results of the 6 remaining non-optimal solutions, half the number

of tested instances. Furthermore, these 6 remaining solutions were, on average, 2.2%

away from the solution obtained in the monolithic model, what gave the fix-and-optimize

heuristic a very thin margin for optimization.

Unfortunately, no solid conclusion regarding the effectiveness of the fix-and-optimize

heuristic for the maximization problem can be made due to the limitations of the dataset

used for testing.

5.3 Results for the Minimization Problem

In this section, the results from both the monolithic model and the heuristic for the

minimization problem are discussed. As described in Chapter 3, the aim of the model is

minimizing the value of the variable height W , compacting the pieces as much as possible.

72

5.3.1 Monolithic Model

In Table 7, the results for the monolithic model of the minimization problem can be

seen. Two scenarios were compared, one where the full sets for grid discretization were

used, and another where the adapted normal patterns were used (see Section 3.3). The

values in bold indicate that the time limit was reached for these instances, and “NSF”

indicates that no solutions that comply with the constraints were found in the given time

limit.

Table 7: Results for the Monolithic Model Minimization Problem
1L 5Ls 1J 5Js 1T 5Ts

Objective 46 66 40 58 50 55
Run Time 127,87 1800,12 5,86 1800,19 101,06 1800,55
Abs GAP 0,00 -16,00 0,00 -2,00 0,00 -6,00
Rel GAP 0,00% 24,24% 0,00% 3,45% 0,00% 10,91%
Iterations 51269 598572 8233 416446 34679 760679
Equations 20767 79515 22087 79515 20767 79515

F
u
ll

S
e
ts

Variables 22993 118833 25009 117985 24065 123121

Objective 46 52 40 56 50 54
Run Time 8,24 1800,15 1,35 235,33 8,14 1800,16
Abs GAP 0,00 -2,00 0,00 0,00 0,00 -4,00
Rel GAP 0,00% 3,85% 0,00% 0,00% 0,00% 7,41%
Iterations 12594 6359406 3161 440889 9572 4201992
Equations 8462 23697 8797 23697 8462 23697

W
it
h

N
P

Variables 5997 30965 6509 30749 6269 32053

1S 5Ss 1Z 5Zs 1Each 5Each

Objective 54 54 52 52 68 NSF
Run Time 149,84 1800,60 124,13 1800,36 1800,31 NSF
Abs GAP 0,00 -6,00 0,00 -2,00 -18,00 NSF
Rel GAP 0,00% 11,11% 0,00% 3,85% 26,47% NSF
Iterations 65742 464031 37166 557817 313137 NSF
Equations 20767 79515 20767 79515 73971 NSF

F
u
ll

S
e
ts

Variables 23513 119289 22489 117025 115057 NSF

Objective 54 52 52 52 54 92
Run Time 12,23 1800,14 3,70 150,49 782,76 1800,30
Abs GAP 0,00 -3,00 0,00 0,00 0,00 -12,00
Rel GAP 0,00% 5,77% 0,00% 0,00% 0,00% 13,04%
Iterations 14482 4519570 5368 353766 1670203 587831
Equations 8462 23697 8462 23697 22290 98197

W
it
h

N
P

Variables 6129 31081 5869 30505 30005 156197
Source: The Author

All the values of the objective function have physical interpretations, and in order to

visualize the physical manifestations of the results, Figure 31 shows the resulting image

for one of the instances:

73

Figure 31: Resulting Figure for the “1Each” Instance with Normal Patterns

Source: The Author

Similarly to the maximization problem, in order to analyze the influence of the normal

patterns in the minimization model, four indicators are analyzed: run time, iterations,

equations and variables. To analyze them, the ratio between the results of each instance

without and with normal patterns was calculated and averaged, with exception of the

instances with all the item types, since the version with full sets could not produce results.

The resulting ratios are, respectively: 9.4, 2.3, 2.9, 3.8. The ratios show that the normal

patterns have a significant influence in the minimization model, since their use greatly

reduces the run time and the iterations that the model needs, and has a smaller, but

significant impact in the number of equations and variables. However, when compared

to the maximization model (see section 5.2.1) the influence of the normal patterns is not

as impactful. Furthermore, we can see in Table 7 that in multiple instances the model

with full sets either was not able to find the optimal solution while the one with normal

patterns was, or the one with normal patterns found a better solution, although neither

version drove the GAP to 0. Furthermore, the impact of normal patterns was so great

in the “5Each” instance, that with them, the model was able to find a feasible solution,

what it was not able to do without them.

In order to analyze the influence of the number of items in the model, the same four

indicators are analyzed: run time, iterations, equations and variables. To analyze them,

the ratio between the results of each instance with five times more items and the one with

5 times less items was calculated and averaged only for the version with normal patterns.

74

The resulting ratios are, respectively: 134.0, 243.6, 3.1, 5.1. The ratios show that the

number of items has a great influence in the minimization model, even larger than the

normal patterns, in all indicators, since their use reduces greatly the run time and the

iterations that the model needs, and has a smaller, but significant impact in the number

of equations and variables. Compared to the maximization problem, the influence of the

number of items is smaller but still very impactful.

In conclusion, the developed model is able to contemplate the minimization cutting

and packing problem with tetris-like items, and the adapted normal patterns are useful

and provide great results.

5.3.2 Relax-and-Fix Heuristic

For the minimization relax-and-fix heuristic, 9 combinations of the relax-and-fix heuris-

tic parameters were compared (see Section 4.1). The tested values of the fix parameter

where {10,15,20}, representing, respectively, one tenth, approximately one seventh and

one fifth of the initial board width (W = 100), while the ones of the ins parameter where

{0,10,15}. Furthermore, all the instances used normal patterns. The results for the relax-

and-fix heuristic of the minimization problem can be seen in Table 8 and Table 9. The

first presents the values for the objective function and the second for the run time. The

values in bold indicate that the value corresponds to the best for the instance, and “NSF”

indicates that no solutions that comply with the constraints were found in the given time

limit in a given iteration. Furthermore, “R” represents the value of the fix parameter,

and “F” of the ins parameter.

Table 8: Results for the Relax-and-Fix Minimization Problem - Objective
R10,F0 R10,F10 R10,F15 R15,F0 R15,F10 R15,F15 R20,F0 R20,F10 R20,F15

1L 60 60 54 54 54 54 54 50 48
5Ls 62 62 60 60 56 60 56 58 54
1J 52 52 52 52 48 52 46 50 40
5Js 66 66 70 64 64 62 60 60 60
1T 56 56 64 52 62 52 52 52 58
5Ts 62 62 60 62 58 62 56 58 58
1S 56 56 62 54 62 54 56 56 54
5Ss 60 60 58 56 56 56 56 54 56
1Z 54 54 62 54 62 54 54 54 58
5Zs 60 60 66 58 58 58 54 54 58
1Each 60 60 68 60 62 60 58 58 58
5Each NSF NSF NSF NSF NSF NSF NSF NSF NSF

Source: The Author

75

Table 9: Results for the Relax-and-Fix Minimization Problem - Run Time
R10,F0 R10,F10 R10,F15 R15,F0 R15,F10 R15,F15 R20,F0 R20,F10 R20,F15

1L 48,74 49,14 38,51 49,91 33,59 43,19 38,25 35,85 26,33
5Ls 430,83 345,01 351,03 857,47 677,02 732,86 725,55 626,61 455,84
1J 71,61 67,46 54,14 52,63 41,59 48,25 59,97 32,33 27,26
5Js 331,84 294,27 406,69 706,58 589,72 478,49 914,74 654,40 730,36
1T 43,41 40,80 29,73 30,98 26,37 26,32 24,36 26,23 23,36
5Ts 575,95 549,23 616,71 793,43 674,58 687,61 784,71 604,10 526,03
1S 37,92 30,98 36,73 32,01 24,74 27,83 27,61 19,40 22,11
5Ss 790,80 767,03 801,98 523,02 582,26 463,41 480,05 435,68 454,09
1Z 43,79 40,21 41,57 38,54 30,86 35,40 30,32 35,71 22,62
5Zs 449,93 492,26 555,77 442,14 323,43 442,85 259,19 373,51 367,58
1Each 438,81 394,75 554,56 510,29 633,49 601,45 482,70 627,74 514,10
5Each NSF NSF NSF NSF NSF NSF NSF NSF NSF

Source: The Author

Regarding the feasibility of the heuristic, although it is possible due to the strict

nature of the minimization problem that the relax-and-fix heuristic will run, at some

point, into an infeasible solution, this did not occur with the generated instances.

In order to better visualize the procedure of the heuristic, Figure 32 presents the

graphical results at the end of each of the five iterations of the relax-and-fix heuristic for

the “1Each” instance with fix = 20 and ins = 15 in sequence:

76

Figure 32: Resulting Figures for the “1Each” Instance with “R20,F15”

Source: The Author

Unlike the maximization problem, the best combination of the fix and ins parameters

is fairly clear. Based on the objective value, the most attractive options are the ones with

“R20”, the largest fix value, since they have the highest number of best values. Analyzing

the run times, the combination of parameters with the highest number of best values is

“R20,F15”. Therefore, the chosen best combination of parameters is “R20,F15”.

Similarly to the maximization problem, in order to evaluate the efficiency of the

heuristic in comparison to the monolithic model, two indicators are analyzed: objective

and run time. To analyze both of these results, the same calculations as the ones in

the maximization problem are used, however, for the run time ratio, the data from the

“5Each” instance was excluded, since the heuristic could not find any solutions in time.

77

The resulting values are, respectively: 2 out of the 12 instances and 2.2 times. This means

that in only 2 instances the heuristic produced the best results and that the heuristic

actually took more time than the monolithic model to run. The first insight stands out

since the results are significantly different than the ones for the maximization problem,

which were much better. One reason might be able to explain this: a possible shortcoming

of the heuristic. The minimization problem is marked by a constant conflict between two

objectives: minimizing the board width Wvar and placing the item replicas, and it is

possible that, if the item placement was somehow more incentivized, the first iterations

would be smarter and would place more items instead of focusing on minimizing the board

width, what might help future iterations by diminishing the number of pieces that must

still be placed in later iterations.

The run time ratio of 2.2 also calls for a more intricate analysis, and, similarly to

the maximization problem, it is possible to see that the heuristic performs better for

more complex instances with more items. For example, the monolithic model could not

prove an optimal result for the “5Ts” instance in 1800 seconds, while the relax-and-fix

heuristic reached a result in approximately 523.0 seconds, more than three times faster,

and the result is only worse by a value of 4. Furthermore, the instances “5Ls” and “5Ss”

present a similar story. The same explanation of the extremely fast run times for the

simple instances and the iterative nature of the heuristic also work for the minimization

problem. Furthermore, the average run time of the instances for the monolithic model

with normal patterns is 600.1 seconds, while for the relax-and-fix heuristic with normal

pattern it is 288.2 seconds, indicating that the heuristic is indeed faster.

As a conclusion, it is possible to state that the relax-and-fix heuristic for the mini-

mization problem is not so effective at reaching close-to-optimal solutions, and, although

fast, the heuristic is faster for more complex instances. The heuristic is useful, though,

for generating initial solutions to be refined in later heuristics.

5.3.3 Fix-and-Optimize Heuristic

For the minimization fix-and-optimize heuristic, 3 different values for opt were com-

pared using the worst combination of the relax-and-fix minimization parameters, fix = 10

and ins = 15 (or “R10,F15”) (see Section 4.2). The tested values of the opt parameter

where {10,15,20}, representing, respectively, one tenth, approximately one seventh and

one fifth of the initial board width (W = 100). Furthermore, all the instances used normal

patterns. The results for the relax-and-fix heuristic of the minimization problem can be

78

seen in Table 10, which presents the values for the objective function and has the best

value for an instance in bold:

Table 10: Results for the Fix-and-Optimize Minimization Problem - Objective
R10,F15,O10 R10,F15,O15 R10,F15,O20

1L 54 52 54
5Ls 60 60 60
1J 52 52 52
5Js 70 70 70
1T 64 64 62
5Ts 60 60 60
1S 62 62 62
5Ss 58 58 58
1Z 62 62 62
5Zs 66 66 66
1Each 66 68 64
5Each NSF NSF NSF

Source: The Author

Regarding the feasibility of the heuristic, due to the nature of the fix-and-optimize

heuristic and the fact that the initial solutions were feasible except for the “5Each” in-

stance, it is impossible for the heuristic to produce an infeasible result. This is because,

in the worst-case scenario of an iteration, the fixed values of the variables would simply

remain the same, what cannot make the problem infeasible.

Unlike the maximization problem, the best value of the opt parameter is fairly clear.

Based on the objective value, the most attractive option if opt = 20, since it was the only

one to produce two improved results.

Similarly to the maximization problem, in order to evaluate the efficiency of the

heuristic in comparison to the relax-and-fix heuristic, only the objective is analyzed.

To analyze this result, the “O20” heuristic is compared to the “R10,F15” relax-and-fix

heuristic. The same calculation as the one in the maximization problem is used. The

resulting value is 2 out of the 11 instances, since the “5Each” instance had an infeasible

solution and could not possibly be improved. This result calls for a more intricate analysis,

since the result from the maximization problem was of low quality and this could have

happened here too. Analyzing the data in more detail, it is possible to see that the fix-and-

optimize heuristic could improve the results of all 11 feasible initial solutions, since none

of them were optimal. Furthermore, these 11 solutions were, on average, 14.4% away from

the solution obtained in the monolithic model, what gave the fix-and-optimize heuristic a

good margin for optimization. This means that the data used in the minimization version

was of good quality, contrary to the one in the maximization version.

The resulting value of 2 improvements out of the 11 possible ones indicates a low

effectiveness of the heuristic, and also Figure 33 shows a phenomenon that was already

expected: the fix-and-optimize heuristic only seems to be slightly effective at the top

79

the board, where the variable width W can actually be optimized. In this figure, the

image on the left shows the result obtained with the “R10,F15” relax-and-fix heuristic,

while the image on the right shows the improved result obtained with the “R10,F15,O20”

fix-and-optimize heuristic for the “1Each” instance:

Figure 33: Fix-and-Optimize Improvement for the “1Each” Instance

Source: The Author

As a conclusion, it is possible to state that the fix-and-optimize heuristic for the

minimization problem is not effective, although it has caused more impact in the results

than the heuristic for the maximization problem.

80

6 FUTURE PROSPECTS

In this chapter, the summary of the results of the monolithic models and the heuristics

is discussed, as well as the limitations of the performed research, and possible future

improvements to be made.

Regarding the monolithic models, it is possible to state that this graduation thesis

was capable of describing two novelty cutting and packing models for extensions/variants

of the 2D-I-IIPP/SLOPP/SKP and 2D-I-ODP problems. Furthermore, the effectiveness

of the adapted normal patterns was tested and substantiated by the results for both kinds

of assignments. This means that this thesis was able to provide a significant literature

that expands across many real-world applications, considering the higher-level cutting

and packing problems which the models concern, and that has direct applications in the

design of phased array antennas, metal stamping, design of printed circuits boards, timber

cutting and layout of newspaper pages, given that the polyomino literature is tied to these

industries.

There are two identified possible limitations of the monolithic models for both prob-

lems: the mathematical modeling of the tetris-like items and the method for grid dis-

cretization. The first limitation derives from the fact that the developed mathematical

models for these items create one constraint for each item type, for each orientation, and

for each possible (p, q) combination, what causes a heavy burden on the model by greatly

increasing the number of equations in it. To improve upon this, it is possible that the

positional relation between the two rectangles in each item can be written differently with

less constraints, or that the same problem can be modelled with a different logic, possibly

non-linearly. In order to determine the difference in efficiency of this new mathematical

description of the problems studied in this thesis, in a future research a battery of com-

putational tests would have to be performed and the results would have to be compared

with the ones obtained in this thesis.

Moreover, the developed adaptation of the normal patterns results in the generation

of relatively many discretizations on the board, compared to the traditional method. Part

81

of the reason for this, is that, due to the irregular and concave nature of the tetris-like

items, the proof that the normal patterns generation does not loose relevant solutions is

not valid in this case, and the adaptations were made to contemplate the nuances from

these irregular pieces. This means that, although the adapted normal patterns did not

seem to negatively affect the results, only improve them, there is no formal proof that

no information is being lost with their use. Future research could aim at improving the

grid discretization algorithm itself to reduce the number of discretizations, and could also

prove the adequacy of the adapted normal patterns for the problems contemplated in this

thesis.

Regarding the maximization and minimization relax-and-fix heuristics, it is possible

to state that this graduation thesis was capable of developing an effective and efficient

relax-and-fix heuristic that works on both kinds of assignment, although better in the

maximization one. Furthermore, the optimal combinations of relax-and-fix parameters

were reached for the generated instances, and could arguably be generalized by taking the

proportion of the board to which the parameter is related, to be used in other instances

or in future researches. This, however, is not certain to result in the best combination of

parameters for new instances, since the determination of the best combination of param-

eters depends on many factors, which were not analyzed in this thesis, including: sizes

of the tetris-like items, using values vi that are not equal to an item’s area and using

rectangular items in the instances.

The main identified limitation of the developed relax-and-fix-heuristic is that the set

of parameters combinations (9 for each kind of assignment) might not be comprehensive

enough, and more data points could have been gathered to further consolidate the obtained

results. This was not performed in this thesis due to deadline limitations, and the 9

studied pairs of parameters contemplated significantly different proportions of the board,

generating solid results. This means that, although not so significant, future research

could expand upon the developed test dataset with more instances and combination.

Regarding the maximization and minimization fix-and-optimize heuristics, it is possi-

ble to state that the developed algorithm was not effective at improving the relax-and-fix

solution, although this statement can be challenged in future researches by increasing

the number of tests in the maximization problem. These results show that the fix-and-

optimize heuristics are the subjects of this thesis with the most impactful limitations.

The first and most crucial limitation comes from the tests performed in the maximization

version of the problem. The initial solutions given to this heuristic for the minimization

problems were sub-optimal and numerous enough, that concluding that the developed

82

heuristic is not effective in this case is logical and solid. However, this is not the case for

the maximization problem, where the initial solutions given to the heuristic where close

to optimal, with 6 of them already being optimal solutions. This decreased the quality

of the test data significantly and made it difficult to conclude whether the maximization

fix-and-optimize heuristic is effective in itself, since the given initial solutions were had

such a small margin for improvement. This reformulation of the testing data could not be

performed in this thesis due to deadlines, but it is encouraged that future researches test

far from optimal initial solutions for the fix-and-optimize heuristic. These solutions could

be generated by hand or with a new, weaker heuristic. With this methodology it would be

possible to distinguish whether the fix-and-optimize heuristic in indeed inefficient for this

cutting and packing problem, or it can be useful in situations where the initial solution

is far from optimal.

Furthermore, a new heuristic tailored to the minimization problem could be devel-

oped, since the relax-and-fix heuristic was only effective at generating sub-optimal initial

solutions for this assignment, and the fix-and-optimize heuristic was practically ineffec-

tive. Two ideas for this new heuristic are: incentivizing the placement of the pieces using

a modification of the objective function, and minimizing a local variable height at each

iteration that concerns the “variables to fix” horizon, instead of minimizing the “global”

W variable height. For the second idea to work it would be necessary to also lower the

y-axis positions of the pieces fixed above the “variables to fix” horizon if the local variable

height was minimized.

In conclusion, this thesis provided valuable models, heuristics and insights for the

cutting and packing problems literature, while also developing a basis for future researches

and improvements upon this graduation thesis.

83

REFERENCES

ABSI, N.; HEUVEL, W. V. D. Worst case analysis of Relax and Fix heuristics for
lot-sizing problems. European Journal of Operational Research, v. 279, n. 2, p. 449–458,
dez. 2019. ISSN 03772217.

ABSI, N.; Kedad-Sidhoum, S. MIP-based heuristics for multi-item capacitated lot-sizing
problem with setup times and shortage costs. RAIRO - Operations Research, v. 41, n. 2,
p. 171–192, abr. 2007. ISSN 0399-0559, 1290-3868.

AKARTUNALI, K.; MILLER, A. J. A heuristic approach for big bucket multi-level
production planning problems. European Journal of Operational Research, v. 193, n. 2,
p. 396–411, mar. 2009. ISSN 03772217.

ARAUJO, S. A. D.; ARENALES, M. N.; CLARK, A. R. Joint rolling-horizon scheduling
of materials processing and lot-sizing with sequence-dependent setups. Journal of
Heuristics, v. 13, n. 4, p. 337–358, ago. 2007. ISSN 1381-1231, 1572-9397.

BABU, A. R.; BABU, N. R. A generic approach for nesting of 2-D parts in 2-D sheets
using genetic and heuristic algorithms. Computer-Aided Design, v. 33, n. 12, p. 879–891,
out. 2001. ISSN 00104485.

BAENA, D.; CASTRO, J.; GONZÁLEZ, J. A. Fix-and-relax approaches for controlled
tabular adjustment. Computers & Operations Research, v. 58, p. 41–52, jun. 2015. ISSN
03050548.

BALAS, E. et al. Octane: A New Heuristic for Pure 0–1 Programs. Operations Research,
v. 49, n. 2, p. 207–225, abr. 2001. ISSN 0030-364X, 1526-5463.

BALAS, E.; MARTIN, C. H. Pivot and Complement–A Heuristic for 0-1 Programming.
Management Science, v. 26, n. 1, p. 86–96, jan. 1980. ISSN 0025-1909, 1526-5501.

BEASLEY, J. E. An Exact Two-Dimensional Non-Guillotine Cutting Tree Search
Procedure. Operations Research, v. 33, n. 1, p. 49–64, fev. 1985. ISSN 0030-364X,
1526-5463.

BEKRAR, A. et al. An improved heuristic and an exact algorithm for the 2D strip and
bin packing problem. International Journal of Product Development, v. 10, n. 1/2/3,
p. 217, 2010. ISSN 1477-9056, 1741-8178.

BENNELL, J. A.; OLIVEIRA, J. F. The geometry of nesting problems: A tutorial.
European Journal of Operational Research, v. 184, n. 2, p. 397–415, 2008. ISSN
0377-2217.

BENNELL, J. A.; OLIVEIRA, J. F. A tutorial in irregular shape packing problems.
Journal of the Operational Research Society, v. 60, n. sup1, p. S93–S105, maio 2009.
ISSN 0160-5682, 1476-9360.

84

BETTINELLI, A.; CESELLI, A.; RIGHINI, G. A branch-and-price algorithm for the
two-dimensional level strip packing problem. 4OR, v. 6, n. 4, p. 361–374, dez. 2008. ISSN
1619-4500, 1614-2411.

BEZERRA, V. M. R. et al. Models for the two-dimensional level strip packing problem
– a review and a computational evaluation. Journal of the Operational Research Society,
v. 71, n. 4, p. 606–627, abr. 2020. ISSN 0160-5682, 1476-9360.

BODINI, O. Tiling a rectangle with polyominoes. In: MORVAN, M.; RÉMILA, E. (Ed.).
Discrete Models for Complex Systems, DMCS’03, Lyon, France, June 16-19, 2003. [S.l.]:
DMTCS, 2003. (DMTCS Proceedings, AB), p. 81–88.

CHERRI, L. H. et al. A MODEL-BASED HEURISTIC FOR THE IRREGULAR STRIP
PACKING PROBLEM. Pesquisa Operacional, v. 36, n. 3, p. 447–468, dez. 2016. ISSN
0101-7438.

CHERRI, L. H.; CHERRI, A. C.; SOLER, E. M. Mixed integer quadratically-constrained
programming model to solve the irregular strip packing problem with continuous
rotations. Journal of Global Optimization, v. 72, n. 1, p. 89–107, set. 2018. ISSN
0925-5001, 1573-2916.

CHERRI, L. H. et al. Robust mixed-integer linear programming models for the irregular
strip packing problem. European Journal of Operational Research, v. 253, n. 3, p.
570–583, set. 2016. ISSN 03772217.

CHRISTOFIDES, N.; WHITLOCK, C. An Algorithm for Two-Dimensional Cutting
Problems. Operations Research, v. 25, n. 1, p. 30–44, fev. 1977. ISSN 0030-364X,
1526-5463.

CLARK, A. R. Optimization approximations for capacity constrained material
requirements planning. International Journal of Production Economics, v. 84, n. 2, p.
115–131, maio 2003. ISSN 09255273.

DASTJERD, N. K.; ERTOGRAL, K. A fix-and-optimize heuristic for the integrated
fleet sizing and replenishment planning problem with predetermined delivery frequencies.
Computers & Industrial Engineering, v. 127, p. 778–787, jan. 2019. ISSN 03608352.

DILLENBERGER, C. et al. On practical resource allocation for production planning and
scheduling with period overlapping setups. European Journal of Operational Research,
v. 75, n. 2, p. 275–286, jun. 1994. ISSN 03772217.

DORNELES, Á. P.; ARAÚJO, O. C. D.; BURIOL, L. S. A fix-and-optimize heuristic for
the high school timetabling problem. Computers & Operations Research, v. 52, p. 29–38,
dez. 2014. ISSN 03050548.

DUTTA, S. Optimization in Chemical Engineering. Daryaganj, Delhi, India: Cambridge
University Press, is part of the University of Cambridge, 2016. ISBN 978-1-107-09123-8.

DYCKHOFF, H. A typology of cutting and packing problems. European Journal of
Operational Research, v. 44, n. 2, p. 145–159, jan. 1990. ISSN 03772217.

85

FASANO, G. A global optimization point of view to handle non-standard object packing
problems. Journal of Global Optimization, v. 55, n. 2, p. 279–299, fev. 2013. ISSN
0925-5001, 1573-2916.

FEDERGRUEN, A.; MEISSNER, J.; TZUR, M. Progressive Interval Heuristics for
Multi-Item Capacitated Lot-Sizing Problems. Operations Research, v. 55, n. 3, p.
490–502, jun. 2007. ISSN 0030-364X, 1526-5463.

FEKETE, S. P.; KAMPHANS, T.; SCHWEER, N. Online Square Packing with Gravity.
Algorithmica, v. 68, n. 4, p. 1019–1044, abr. 2014. ISSN 0178-4617, 1432-0541.

FLOUDAS, C. A.; LIN, X. Mixed Integer Linear Programming in Process Scheduling:
Modeling, Algorithms, and Applications. Annals of Operations Research, v. 139, n. 1, p.
131–162, out. 2005. ISSN 0254-5330, 1572-9338.

FOWLER, R. J.; PATERSON, M. S.; TANIMOTO, S. L. Optimal packing and covering
in the plane are NP-complete. Information Processing Letters, v. 12, n. 3, p. 133–137,
jun. 1981. ISSN 00200190.

FRISKE, M. W.; BURIOL, L. S.; CAMPONOGARA, E. A relax-and-fix and
fix-and-optimize algorithm for a Maritime Inventory Routing Problem. Computers &
Operations Research, v. 137, p. 105520, jan. 2022. ISSN 03050548.

GLOVER, F.; LØKKETANGEN, A.; WOODRUFF, D. L. Scatter Search to Generate
Diverse MIP Solutions. In: SHARDA, R. et al. (Ed.). Computing Tools for Modeling,
Optimization and Simulation. Boston, MA: Springer US, 2000. v. 12, p. 299–317. ISBN
978-1-4613-7062-8 978-1-4615-4567-5.

GOLOMB, S. W. Checker Boards and Polyominoes. The American Mathematical
Monthly, v. 61, n. 10, p. 675–682, dez. 1954. ISSN 0002-9890, 1930-0972.

GOLOMB, S. W. Tiling with polyominoes. Journal of Combinatorial Theory, v. 1, n. 2,
p. 280–296, set. 1966. ISSN 00219800.

HARTMANN, S. Packing problems and project scheduling models: An integrating
perspective. Journal of the Operational Research Society, v. 51, n. 9, p. 1083–1092, set.
2000. ISSN 0160-5682, 1476-9360.

HAWA, A. L.; LEWIS, R.; THOMPSON, J. M. Heuristics for the Score-Constrained
Strip-Packing Problem. In: KIM, D.; UMA, R. N.; ZELIKOVSKY, A. (Ed.).
Combinatorial Optimization and Applications. Cham: Springer International Publishing,
2018. v. 11346, p. 449–462. ISBN 978-3-030-04650-7 978-3-030-04651-4.

HELBER, S.; SAHLING, F. A fix-and-optimize approach for the multi-level capacitated
lot sizing problem. International Journal of Production Economics, v. 123, n. 2, p.
247–256, fev. 2010. ISSN 09255273.

HERZ, J. C. Recursive Computational Procedure for Two-dimensional Stock Cutting.
IBM Journal of Research and Development, v. 16, n. 5, p. 462–469, set. 1972. ISSN
0018-8646, 0018-8646.

86

HINOSTROZA, I.; PRADENAS, L.; PARADA, V. Board cutting from logs: Optimal
and heuristic approaches for the problem of packing rectangles in a circle. International
Journal of Production Economics, v. 145, n. 2, p. 541–546, out. 2013. ISSN 09255273.

JONES, D. R. A fully general, exact algorithm for nesting irregular shapes. Journal of
Global Optimization, v. 59, n. 2-3, p. 367–404, jul. 2014. ISSN 0925-5001, 1573-2916.

JÚNIOR, A. N. et al. The rectangular two-dimensional strip packing problem real-life
practical constraints: A bibliometric overview. Computers & Operations Research, v. 137,
p. 105521, jan. 2022. ISSN 03050548.

JUNQUEIRA, L. Modelos de programação matemática para problemas de carregamento
de caixas dentro de contêineres. Tese (Doutorado) — Universidade Federal de São Carlos,
São Carlos, 2009.

KARADEMIR, S.; PROKOPYEV, O. A.; MAILLOUX, R. J. Irregular polyomino tiling
via integer programming with application in phased array antenna design. Journal of
Global Optimization, v. 65, n. 2, p. 137–173, jun. 2016. ISSN 0925-5001, 1573-2916.

KASHKOUSH, M. N.; SHALABY, M. A.; ABDELHAFIEZ, E. A. A mixed-integer
model for two-dimensional polyominoes strip packing and tiling problems. International
Journal of Operational Research, v. 15, n. 4, p. 391, 2012. ISSN 1745-7645, 1745-7653.

KENMOCHI, M. et al. Exact algorithms for the two-dimensional strip packing problem
with and without rotations. European Journal of Operational Research, v. 198, n. 1, p.
73–83, out. 2009. ISSN 03772217.

KIERKOSZ, I.; LUCZAK, M. A hybrid evolutionary algorithm for the two-dimensional
packing problem. Central European Journal of Operations Research, v. 22, n. 4, p.
729–753, dez. 2014. ISSN 1435-246X, 1613-9178.

KITA, N.; MIYATA, K. Computational design of polyomino puzzles. The Visual
Computer, v. 37, n. 4, p. 777–787, abr. 2021. ISSN 0178-2789, 1432-2315.

KLARNER, D. A. Packing a rectangle with congruent N-ominoes. Journal of
Combinatorial Theory, v. 7, n. 2, p. 107–115, set. 1969. ISSN 00219800.

LAGUNA, M.; MARTÍ, R. Heuristics. In: GASS, S. I.; FU, M. C. (Ed.). Encyclopedia
of Operations Research and Management Science. Boston, MA: Springer US, 2013. p.
695–703. ISBN 978-1-4419-1137-7 978-1-4419-1153-7.

LAI, X. et al. Iterated dynamic thresholding search for packing equal circles into a
circular container. European Journal of Operational Research, v. 299, n. 1, p. 137–153,
maio 2022. ISSN 03772217.

LEAO, A. A. et al. Irregular packing problems: A review of mathematical models.
European Journal of Operational Research, v. 282, n. 3, p. 803–822, maio 2020. ISSN
03772217.

LINS, L.; LINS, S.; MORABITO, R. An n-tet graph approach for non-guillotine packings
of n-dimensional boxes into an n-container. European Journal of Operational Research,
v. 141, n. 2, p. 421–439, set. 2002. ISSN 03772217.

87

LIU, M. M. The Tetris Proof. 2017.

LO, K.-Y.; FU, C.-W.; LI, H. 3D polyomino puzzle. ACM Transactions on Graphics,
v. 28, n. 5, p. 1–8, dez. 2009. ISSN 0730-0301, 1557-7368.

LODI, A.; MARTELLO, S.; MONACI, M. Two-dimensional packing problems: A
survey. European Journal of Operational Research, v. 141, n. 2, p. 241–252, 2002. ISSN
0377-2217.

MERCÉ, C.; FONTAN, G. MIP-based heuristics for capacitated lotsizing problems.
International Journal of Production Economics, v. 85, n. 1, p. 97–111, jul. 2003. ISSN
09255273.

MURTHY, P. R. Operations Research. New Delhi: New Age International, 2007. ISBN
978-81-224-2069-2.

Noor-E-Alam, M.; DOUCETTE, J. Relax-and-fix decomposition technique for solving
large scale grid-based location problems. Computers & Industrial Engineering, v. 63,
n. 4, p. 1062–1073, dez. 2012. ISSN 03608352.

OLIVEIRA, E. D. A. S. et al. Relax-and-Fix Aplicado ao Problema de Corte de Estoque
com Data de Entrega. In: CNMAC 2019 - XXXIX Congresso Nacional de Matemática
Aplicada e Computacional. [S.l.: s.n.], 2020.

OLIVEIRA, J. F. C.; FERREIRA, J. A. S. Algorithms for Nesting Problems. In:
FANDEL, G.; TROCKEL, W.; VIDAL, R. V. V. (Ed.). Applied Simulated Annealing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. v. 396, p. 255–273. ISBN
978-3-540-56229-0 978-3-642-46787-5.

OLIVEIRA, L. D.; SOUZA, C. C. D.; YUNES, T. Improved bounds for the traveling
umpire problem: A stronger formulation and a relax-and-fix heuristic. European Journal
of Operational Research, v. 236, n. 2, p. 592–600, jul. 2014. ISSN 03772217.

POCHET, Y.; WOLSEY, L. A. Production Planning by Mixed Integer Programming.
New York Berlin: Springer, 2006. (Springer Series in Operations Research and Financial
Engineering). ISBN 978-0-387-33477-6.

QUEIROZ, T. A. D.; MIYAZAWA, F. K. Two-dimensional strip packing problem
with load balancing, load bearing and multi-drop constraints. International Journal of
Production Economics, v. 145, n. 2, p. 511–530, out. 2013. ISSN 09255273.

QUEIROZ, T. A. D.; MIYAZAWA, F. K. Order and static stability into the strip
packing problem. Annals of Operations Research, v. 223, n. 1, p. 137–154, dez. 2014.
ISSN 0254-5330, 1572-9338.

REID, M. Tiling Rectangles and Half Strips with Congruent Polyominoes. Journal of
Combinatorial Theory, Series A, v. 80, n. 1, p. 106–123, out. 1997. ISSN 00973165.

RIEHME, J.; SCHEITHAUER, G.; TERNO, J. The solution of two-stage guillotine
cutting stock problems having extremely varying order demands. European Journal of
Operational Research, v. 91, n. 3, p. 543–552, jun. 1996. ISSN 03772217.

88

RINALDI, F.; FRANZ, A. A two-dimensional strip cutting problem with sequencing
constraint. European Journal of Operational Research, v. 183, n. 3, p. 1371–1384, dez.
2007. ISSN 03772217.

ROCHA, P. et al. Constraint Aggregation in Non-linear Programming Models for Nesting
Problems. In: FONSECA, R. J.; WEBER, G.-W.; TELHADA, J. (Ed.). Computational
Management Science. Cham: Springer International Publishing, 2016. v. 682, p. 175–180.
ISBN 978-3-319-20429-1 978-3-319-20430-7.

SALTO, C.; ALBA, E.; MOLINA, J. M. Analysis of Distributed Genetic Algorithms for
Solving a Strip Packing Problem. In: LIRKOV, I.; MARGENOV, S.; WAŚNIEWSKI, J.
(Ed.). Large-Scale Scientific Computing. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008. v. 4818, p. 609–617. ISBN 978-3-540-78825-6 978-3-540-78827-0.

SALTZMAN, R. M.; HILLIER, F. S. A Heuristic Ceiling Point Algorithm for General
Integer Linear Programming. Management Science, v. 38, n. 2, p. 263–283, fev. 1992.
ISSN 0025-1909, 1526-5501.

SCHEITHAUER, G.; TERNO, J. Modeling of packing problems. Optimization, v. 28,
n. 1, p. 63–84, jan. 1993. ISSN 0233-1934, 1029-4945.

SEGENREICH, S. A.; BRAGA, L. M. P. F. Optimal nesting of general plane figures: A
Monte Carlo heuristical approach. Computers & Graphics, v. 10, n. 3, p. 229–237, jan.
1986. ISSN 00978493.

SILVA, A. et al. A cutting plane method and a parallel algorithm for packing rectangles
in a circular container. European Journal of Operational Research, v. 303, n. 1, p.
114–128, nov. 2022. ISSN 03772217.

SILVA, E.; OLIVEIRA, J. F.; WÄSCHER, G. 2DCPackGen: A problem generator
for two-dimensional rectangular cutting and packing problems. European Journal of
Operational Research, v. 237, n. 3, p. 846–856, set. 2014. ISSN 03772217.

SILVEIRA, J. L. D.; MIYAZAWA, F. K.; XAVIER, E. C. Heuristics for the strip packing
problem with unloading constraints. Computers & Operations Research, v. 40, n. 4, p.
991–1003, abr. 2013. ISSN 03050548.

SILVEIRA, J. L. D.; XAVIER, E. C.; MIYAZAWA, F. K. Two-dimensional strip packing
with unloading constraints. Discrete Applied Mathematics, v. 164, p. 512–521, fev. 2014.
ISSN 0166218X.

STADTLER, H. Multilevel Lot Sizing with Setup Times and Multiple Constrained
Resources: Internally Rolling Schedules with Lot-Sizing Windows. Operations Research,
v. 51, n. 3, p. 487–502, jun. 2003. ISSN 0030-364X, 1526-5463.

SUGI, M. et al. Solution of the Rectangular Strip Packing Problem Considering a
3-Stage Guillotine Cutting Constraint with Finite Slitter Blades. International Journal of
Automation Technology, v. 14, n. 3, p. 447–458, maio 2020. ISSN 1883-8022, 1881-7629.

TETRIS. About Tetris®. 2022.

89

WÄSCHER, G.; HAUSSNER, H.; SCHUMANN, H. An improved typology of cutting
and packing problems. European Journal of Operational Research, v. 183, n. 3, p.
1109–1130, dez. 2007. ISSN 03772217.

WINSTON, W. L. Operations Research: Applications and Algorithms. 3. ed.,[nachdr.].
ed. Belmont, Calif: Duxbury Press, 1997. ISBN 978-0-534-52020-5 978-0-534-20971-1.

WOLSEY, L. A. Integer Programming. New York: Wiley, 1998. (Wiley-Interscience
Series in Discrete Mathematics and Optimization). ISBN 978-0-471-28366-9.

WU, L. et al. NHACR: A novel heuristic approach for 2D rectangle packing area
minimization problem with central rectangle. Engineering Applications of Artificial
Intelligence, v. 103, p. 104291, ago. 2021. ISSN 09521976.

90

APPENDIX A – IMAGES GENERATED

BY THE

MAXIMIZATION

MONOLITHIC MODEL

WITH NORMAL

PATTERNS

Solution for the “1L” Instance

Source: The Author

91

Solution for the “1J” Instance

Source: The Author

Solution for the “1T” Instance

Source: The Author

92

Solution for the “1S” Instance

Source: The Author

Solution for the “1Z” Instance

Source: The Author

93

Solution for the “5Ls” Instance

Source: The Author

Solution for the “5Js” Instance

Source: The Author

94

Solution for the “5Ts” Instance

Source: The Author

Solution for the “5Ss” Instance

Source: The Author

95

Solution for the “5Zs” Instance

Source: The Author

Solution for the “1Each” Instance

Source: The Author

96

Solution for the “5Each” Instance

Source: The Author

97

APPENDIX B – IMAGES GENERATED

BY THE

MINIMIZATION

MONOLITHIC MODEL

WITH NORMAL

PATTERNS

Solution for the “1L” Instance

Source: The Author

98

Solution for the “1J” Instance

Source: The Author

Solution for the “1T” Instance

Source: The Author

99

Solution for the “1S” Instance

Source: The Author

Solution for the “1Z” Instance

Source: The Author

100

Solution for the “5Ls” Instance

Source: The Author

Solution for the “5Js” Instance

Source: The Author

101

Solution for the “5Ts” Instance

Source: The Author

Solution for the “5Ss” Instance

Source: The Author

102

Solution for the “5Zs” Instance

Source: The Author

Solution for the “1Each” Instance

Source: The Author

103

Solution for the “5Each” Instance

Source: The Author

